Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Evol ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743589

RESUMO

Chromosomal inversions are structural mutations that can play a prominent role in adaptation and speciation. Inversions segregating across species boundaries (trans-species inversions) are often taken as evidence for ancient balancing selection or adaptive introgression but can also be due to incomplete lineage sorting (ILS). Using whole-genome resequencing data from 18 populations of 11 recognized munia species in the genus Lonchura (N = 176 individuals), we identify four large para- and pericentric inversions ranging in size from 4 to 20 Mb. All four inversions co-segregate across multiple species and predate the numerous speciation events associated with the rapid radiation of this clade across the prehistoric Sahul (Australia, New Guinea) and Bismarck Archipelago. Using coalescent theory, we infer that trans-specificity is improbable for neutrally segregating variation despite substantial ILS characterizing this young radiation. Instead, maintenance of all three autosomal inversions (chr1, chr5, chr6) is best explained by selection acting along eco-geographic clines not observed for the collinear parts of the genome. In addition, the large sex chromosome inversion largely aligns with species boundaries and shows signatures of repeated positive selection for both alleles. This study provides evidence for trans-species inversion polymorphisms involved in both adaptation and speciation. It further highlights the importance of informing selection inference using a null model of neutral evolution derived from the collinear part of the genome.

2.
Proc Natl Acad Sci U S A ; 119(17): e2121752119, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35412865

RESUMO

In coevolutionary arms races, interacting species impose selection on each other, generating reciprocal adaptations and counter adaptations. This process is typically enhanced by genetic recombination and heterozygosity, but these sources of evolutionary novelty may be secondarily lost when uniparental inheritance evolves to ensure the integrity of sex-linked adaptations. We demonstrate that host-specific egg mimicry in the African cuckoo finch Anomalospiza imberbis is maternally inherited, confirming the validity of an almost century-old hypothesis. We further show that maternal inheritance not only underpins the mimicry of different host species but also additional mimetic diversification that approximates the range of polymorphic egg "signatures" that have evolved within host species as an escalated defense against parasitism. Thus, maternal inheritance has enabled the evolution and maintenance of nested levels of mimetic specialization in a single parasitic species. However, maternal inheritance and the lack of sexual recombination likely disadvantage cuckoo finches by stifling further adaptation in the ongoing arms races with their individual hosts, which we show have retained biparental inheritance of egg phenotypes. The inability to generate novel genetic combinations likely prevents cuckoo finches from mimicking certain host phenotypes that are currently favored by selection (e.g., the olive-green colored eggs laid by some tawny-flanked prinia, Prinia subflava, females). This illustrates an important cost of coding coevolved adaptations on the nonrecombining sex chromosome, which may impede further coevolutionary change by effectively reversing the advantages of sexual reproduction in antagonistic coevolution proposed by the Red Queen hypothesis.


Assuntos
Adaptação Fisiológica , Evolução Biológica , Mimetismo Biológico , Herança Materna , Comportamento de Nidação , Passeriformes , Adaptação Fisiológica/genética , Animais , Mimetismo Biológico/genética , Passeriformes/genética , Passeriformes/fisiologia , Pigmentação/genética
3.
Nat Methods ; 18(9): 1112-1116, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34462591

RESUMO

Optogenetic methods have been widely used in rodent brains, but remain relatively under-developed for nonhuman primates such as rhesus macaques, an animal model with a large brain expressing sophisticated sensory, motor and cognitive behaviors. To address challenges in behavioral optogenetics in large brains, we developed Opto-Array, a chronically implantable array of light-emitting diodes for high-throughput optogenetic perturbation. We demonstrated that optogenetic silencing in the macaque primary visual cortex with the help of the Opto-Array results in reliable retinotopic visual deficits in a luminance discrimination task. We separately confirmed that Opto-Array illumination results in local neural silencing, and that behavioral effects are not due to tissue heating. These results demonstrate the effectiveness of the Opto-Array for behavioral optogenetic applications in large brains.


Assuntos
Encéfalo/fisiologia , Optogenética/métodos , Próteses e Implantes , Animais , Comportamento Animal , Eletrônica/métodos , Tecnologia de Fibra Óptica , Macaca mulatta , Masculino , Córtex Visual
4.
Evol Appl ; 14(6): 1646-1658, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34178110

RESUMO

Understanding how risk factors affect populations across their annual cycle is a major challenge for conserving migratory birds. For example, disease outbreaks may happen on the breeding grounds, the wintering grounds, or during migration and are expected to accelerate under climate change. The ability to identify the geographic origins of impacted individuals, especially outside of breeding areas, might make it possible to predict demographic trends and inform conservation decision-making. However, such an effort is made more challenging by the degraded state of carcasses and resulting low quality of DNA available. Here, we describe a rapid and low-cost approach for identifying the origins of birds sampled across their annual cycle that is robust even when DNA quality is poor. We illustrate the approach in the common loon (Gavia immer), an iconic migratory aquatic bird that is under increasing threat on both its breeding and wintering areas. Using 300 samples collected from across the breeding range, we develop a panel of 158 single-nucleotide polymorphisms (SNP) loci with divergent allele frequencies across six genetic subpopulations. We use this SNP panel to identify the breeding grounds for 142 live nonbreeding individuals and carcasses. For example, genetic assignment of loons sampled during botulism outbreaks in parts of the Great Lakes provides evidence for the significant role the lakes play as migratory stopover areas for loons that breed across wide swaths of Canada, and highlights the vulnerability of a large segment of the breeding population to botulism outbreaks that are occurring in the Great Lakes with increasing frequency. Our results illustrate that the use of SNP panels to identify breeding origins of carcasses collected during the nonbreeding season can improve our understanding of the population-specific impacts of mortality from disease and anthropogenic stressors, ultimately allowing more effective management.

5.
Mol Phylogenet Evol ; 156: 107034, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33276120

RESUMO

Islands are separated by natural barriers that prevent gene flow between terrestrial populations and promote allopatric diversification. Birds in the South Pacific are an excellent model to explore the interplay between isolation and gene flow due to the region's numerous archipelagos and well-characterized avian communities. The wattled honeyeater complex (Foulehaio spp.) comprises three allopatric species that are widespread and common across Fiji, Tonga, Samoa, and Wallis and Futuna. Here, we explored patterns of diversification within and among these lineages using genomic and morphometric data. We found support for three clades of Foulehaio corresponding to three recognized species. Within F. carunculatus, population genetic analyses identified nine major lineages, most of which were composed of sub-lineages that aligned nearly perfectly to individual island populations. Despite genetic structure and great geographic distance between populations, we found low levels of gene flow between populations in adjacent archipelagos. Additionally, body size of F. carunculatus varied randomly with respect to evolutionary history (as Ernst Mayr predicted), but correlated negatively with island size, consistent with the island rule. Our findings support a hypothesis that widespread taxa can show population structure between immediately adjacent islands, and likely represent many independent lineages loosely connected by gene flow.


Assuntos
Fluxo Gênico , Genética Populacional , Ilhas , Passeriformes/genética , Animais , Sequência Conservada/genética , Feminino , Fiji , Funções Verossimilhança , Masculino , Filogenia , Polimorfismo de Nucleotídeo Único/genética
6.
Mol Ecol ; 28(24): 5203-5216, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31736171

RESUMO

Interspecific hybridization is recognized as an important process in the evolutionary dynamics of both speciation and the reversal of speciation. However, our understanding of the spatial and temporal patterns of hybridization that erode versus promote species boundaries is incomplete. The endangered, endemic koloa maoli (or Hawaiian duck, Anas wyvilliana) is thought to be threatened with genetic extinction through ongoing hybridization with an introduced congener, the feral mallard (A. platyrhynchos). We investigated spatial and temporal variation in hybrid prevalence in populations throughout the main Hawaiian Islands, using genomic data to characterize population structure of koloa, quantify the extent of hybridization, and compare hybrid proportions over time. To accomplish this, we genotyped 3,308 double-digest restriction-site-associated DNA (ddRAD) loci in 425 putative koloa, mallards, and hybrids from populations across the main Hawaiian Islands. We found that despite a population decline in the last century, koloa genetic diversity is high. There were few hybrids on the island of Kaua'i, home to the largest population of koloa. By contrast, we report that sampled populations outside of Kaua'i can now be characterized as hybrid swarms, in that all individuals sampled were of mixed koloa × mallard ancestry. Further, there is some evidence that these swarms are stable over time. These findings demonstrate spatial variation in the extent and consequences of interspecific hybridization, and highlight how islands or island-like systems with small population sizes may be especially prone to genetic extinction when met with a congener that is not reproductively isolated.


Assuntos
Patos/genética , Evolução Molecular , Variação Genética/genética , Hibridização Genética , Animais , Evolução Biológica , DNA/genética , Espécies em Perigo de Extinção , Genótipo , Havaí , Ilhas
7.
Mol Phylogenet Evol ; 136: 196-205, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30999037

RESUMO

The West Indian avifauna has provided fundamental insights into island biogeography, taxon cycles, and the evolution of avian behavior. Our interpretations, however, should rely on robust hypotheses of evolutionary relationships and consistent conclusions about taxonomic status in groups with many endemic island populations. Here we present a phylogenetic study of the West Indian thrashers, tremblers, and allies, an assemblage of at least 5 species found on 29 islands, including what is considered the Lesser Antilles' only avian radiation. We improve on previous phylogenetic studies of this group by using double-digest restriction site-associated DNA sequencing (ddRAD-seq) to broadly sample loci scattered across the nuclear genome. A variety of analyses, based on either nucleotide variation in 2223 loci recovered in all samples or at 13,282 loci confidently scored as present or absent in all samples, converged on a single well-supported phylogenetic hypothesis. Results indicate that the resident West Indian taxa form a monophyletic group, exclusive of the Neotropical-Nearctic migratory Gray Catbird Dumetella carolinensis, which breeds in North America; this outcome differs from earlier studies suggesting that Gray Catbird was nested within a clade of island resident species. Thus, our findings imply a single colonization of the West Indies without the need to invoke a subsequent 'reverse colonization' of the mainland by West Indian taxa. Additionally, our study is the first to sample both endemic subspecies of the endangered White-breasted Thrasher Ramphocinclus brachyurus. We find that these subspecies have a long history of evolutionary independence with no evidence of gene flow, and are as genetically divergent from each other as other genera in the group. These findings support recognition of R. brachyurus (restricted to Martinique) and the Saint Lucia Thrasher R. sanctaeluciae as two distinct, single-island endemic species, and indicate the need to re-evaluate conservation plans for these taxa. Our results demonstrate the utility of phylogenomic datasets for generating robust systematic hypotheses.


Assuntos
Sequência Conservada , Passeriformes/classificação , Passeriformes/genética , Filogenia , Filogeografia , Animais , Sequência de Bases , DNA Mitocondrial/genética , Mapeamento por Restrição , Análise de Sequência de DNA , Especificidade da Espécie , Índias Ocidentais
8.
Mol Ecol ; 28(10): 2594-2609, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30941840

RESUMO

Recently evolved species typically share genetic variation across their genomes due to incomplete lineage sorting and/or ongoing gene flow. Given only subtle allele frequency differences at most loci and the expectation that divergent selection may affect only a tiny fraction of the genome, distinguishing closely related species based on multi-locus data requires substantial genomic coverage. In this study, we used ddRAD-seq to sample the genomes of five recently diverged, New World "mallards" (Anas spp.), a group of dabbling duck species characterized by diagnosable phenotypic differences but minimal genetic differentiation. With increased genomic sampling, we aimed to characterize population structure within this group and identify genomic regions that may have experienced divergent selection during speciation. We analyzed 3,017 autosomal ddRAD-seq loci and 177 loci from the Z-chromosome. In contrast to previous studies, the ddRAD-seq data were sufficient to assign individuals to their respective species or subspecies and to generate estimates of gene flow in a phylogenetic framework. We find limited evidence of contemporary gene flow between the dichromatic mallard and several monochromatic taxa, but find evidence for historical gene flow between some monochromatic species pairs. We conclude that the overall genetic similarity of these taxa likely reflects retained ancestral polymorphism rather than recent and extensive gene flow. Thus, despite recurring cases of hybridization in this group, our results challenge the current dogma predicting the genetic extinction of the New World monochromatic dabbling ducks via introgressive hybridization with mallards. Moreover, ddRAD-seq data were sufficient to identify previously unknown outlier regions across the Z-chromosome and several autosomal chromosomes that may have been involved in the diversification of species in this recent radiation.


Assuntos
Patos/genética , Especiação Genética , Filogenia , Cromossomos Sexuais/genética , Animais , Fluxo Gênico/genética , Genoma/genética , Genômica , Hibridização Genética , Metagenômica , América do Norte , Especificidade da Espécie
9.
Nat Ecol Evol ; 1(12): 1912-1922, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29085063

RESUMO

Recent genomic analyses of evolutionary radiations suggest that ancestral or standing genetic variation may facilitate rapid diversification, particularly in cases involving convergence in ecological traits. Likewise, lateral transfer of alleles via hybridization may also facilitate adaptive convergence, but little is known about the role of ancestral variation in examples of explosive diversification that primarily involve the evolution of species recognition traits. Here, we show that genomic regions distinguishing sympatric species in an extraordinary radiation of small finches called munias (genus Lonchura) have phylogenetic histories that are discordant with each other, with the overall pattern of autosomal differentiation among species, and with sex-linked and mitochondrial components of the genome. Genome-wide data for 11 species sampled in Australia and Papua New Guinea indicate substantial autosomal introgression between sympatric species, but also identify a limited number of divergent autosomal regions, several of which overlap known colour genes (ASIP, EDN3, IGSF11, KITLG, MC1R and SOX10). Phylogenetic analysis of these outlier regions shows that different munia species have acquired unique combinations of alleles across a relatively small set of phenotypically relevant genes. Our results demonstrate that the recombination of ancestral genetic variation across multiple loci may be an important mechanism for generating phenotypic novelty and diversity.


Assuntos
Proteínas Aviárias/genética , Evolução Biológica , Genoma , Aves Canoras/genética , Animais , Feminino , Especiação Genética , Masculino , Nova Guiné , Filogenia , Queensland , Simpatria
10.
Evolution ; 70(12): 2823-2838, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27718251

RESUMO

Although sexual ornamentation mediates reproductive isolation, comparative evidence does not support the hypothesis that stronger sexual selection promotes speciation. Prior analyses have neglected the possibility that decreases in ornamentation may also promote speciation, such that both increases and decreases in the strength of sexual selection and associated changes in ornamentation promote speciation. To test this hypothesis, we studied color ornamentation in one of the largest and fastest avian radiations, the estrildid finches. We show that more ornamented lineages do not speciate more, even though they tend to have faster rates of ornamental evolution, whereas changes in ornamentation (i.e., increases or decreases) are associated with speciation. This indicates that divergence in sexually selected ornamentation, rather than stronger sexual selection, promotes or is otherwise associated with speciation. We also show that gregariousness and investment in reproduction are related to the elaboration of some ornamental traits, suggesting ecological influences on speciation mediated by ornamentation. We conclude that past work focusing specifically on the strength of sexual selection may have greatly underestimated the importance of sexual ornamentation for speciation.


Assuntos
Especiação Genética , Preferência de Acasalamento Animal , Pigmentação , Aves Canoras/fisiologia , Animais , Cor , Feminino , Masculino , Filogenia , Análise de Sequência de DNA , Aves Canoras/genética , Espectrofotometria
11.
Nat Commun ; 7: 10272, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26754355

RESUMO

Maternal inheritance via the female-specific W chromosome was long ago proposed as a potential solution to the evolutionary enigma of co-existing host-specific races (or 'gentes') in avian brood parasites. Here we report the first unambiguous evidence for maternal inheritance of egg colouration in the brood-parasitic common cuckoo Cuculus canorus. Females laying blue eggs belong to an ancient (∼2.6 Myr) maternal lineage, as evidenced by both mitochondrial and W-linked DNA, but are indistinguishable at nuclear DNA from other common cuckoos. Hence, cuckoo host races with blue eggs are distinguished only by maternally inherited components of the genome, which maintain host-specific adaptation despite interbreeding among males and females reared by different hosts. A mitochondrial phylogeny suggests that blue eggs originated in Asia and then expanded westwards as female cuckoos laying blue eggs interbred with the existing European population, introducing an adaptive trait that expanded the range of potential hosts.


Assuntos
Evolução Biológica , Aves/genética , DNA Mitocondrial/genética , Casca de Ovo , Pigmentação/genética , Cromossomos Sexuais/genética , Animais , Ovos , Feminino , Fenótipo , Filogenia
12.
Mol Phylogenet Evol ; 94(Pt A): 122-35, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26279345

RESUMO

Genotype-by-sequencing (GBS) methods have revolutionized the field of molecular ecology, but their application in molecular phylogenetics remains somewhat limited. In addition, most phylogenetic studies based on large GBS data sets have relied on analyses of concatenated data rather than species tree methods that explicitly account for genealogical stochasticity among loci. We explored the utility of "double-digest" restriction site-associated DNA sequencing (ddRAD-seq) for phylogenetic analyses of the Lagonosticta firefinches (family Estrildidae) and the Vidua brood parasitic finches (family Viduidae). As expected, the number of homologous loci shared among samples was negatively correlated with genetic distance due to the accumulation of restriction site polymorphisms. Nonetheless, for each genus, we obtained data sets of ∼3000 loci shared in common among all samples, including a more distantly related outgroup taxon. For all samples combined, we obtained >1000 homologous loci despite ∼20my divergence between estrildid and parasitic finches. In addition to nucleotide polymorphisms, the ddRAD-seq data yielded large sets of indel and locus presence-absence polymorphisms, all of which had higher consistency indices than mtDNA sequence data in the context of concatenated parsimony analyses. Species tree methods, using individual gene trees or single nucleotide polymorphisms as input, generated results broadly consistent with analyses of concatenated data, particularly for Lagonosticta, which appears to have a well resolved, bifurcating history. Results for Vidua were also generally consistent across methods and data sets, although nodal support and results from different species tree methods were more variable. Lower gene tree congruence in Vidua is likely the result of its unique evolutionary history, which includes rapid speciation by host shift and occasional hybridization and introgression due to incomplete reproductive isolation. We conclude that ddRAD-seq is a cost-effective method for generating robust phylogenetic data sets, particularly for analyses of closely related species and genera.


Assuntos
Tentilhões/genética , Mutação INDEL/genética , Nucleotídeos/genética , Filogenia , Polimorfismo Genético/genética , Animais , Sequência de Bases , DNA Mitocondrial/genética , Evolução Molecular , Especiação Genética , Hibridização Genética , Análise de Sequência de DNA
13.
BMC Genomics ; 16: 1038, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26645667

RESUMO

BACKGROUND: Studies of non-model species are important for understanding the molecular processes underpinning phenotypic variation under natural ecological conditions. The common buzzard (Buteo buteo; Aves: Accipitriformes) is a widespread and common Eurasian raptor with three distinct plumage morphs that differ in several fitness-related traits, including parasite infestation. To provide a genomic resource for plumage polymorphic birds in general and to search for candidate genes relating to fitness, we generated a transcriptome from a single dead buzzard specimen plus easily accessible, minimally invasive samples from live chicks. RESULTS: We not only de novo assembled a near-complete buzzard transcriptome, but also obtained a significant fraction of the transcriptome of its malaria-like parasite, Leucocytozoon buteonis. By identifying melanogenesis-related transcripts that are differentially expressed in light ventral and dark dorsal feathers, but which are also expressed in other regions of the body, we also identified a suite of candidate genes that could be associated with fitness differences among the morphs. These include several immune-related genes, providing a plausible link between melanisation and parasite load. qPCR analysis of a subset of these genes revealed significant differences between ventral and dorsal feathers and an additional effect of morph. CONCLUSION: This new resource provides preliminary insights into genes that could be involved in fitness differences between the buzzard colour morphs, and should facilitate future studies of raptors and their malaria-like parasites.


Assuntos
Biologia Computacional , Genômica , Haemosporida/genética , Polimorfismo Genético , Aves Predatórias/genética , Aves Predatórias/parasitologia , Transcriptoma , Sequência de Aminoácidos , Animais , Biologia Computacional/métodos , Regulação da Expressão Gênica , Marcadores Genéticos , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Melaninas/metabolismo , Redes e Vias Metabólicas , Anotação de Sequência Molecular , Dados de Sequência Molecular , Aves Predatórias/metabolismo , Reprodutibilidade dos Testes , Alinhamento de Sequência
14.
Mol Ecol ; 24(22): 5495-506, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26407297

RESUMO

Landscape complexity influences patterns of animal dispersal, which in turn may affect both gene flow and the spread of pathogens. White-nose syndrome (WNS) is an introduced fungal disease that has spread rapidly throughout eastern North America, causing massive mortality in bat populations. We tested for a relationship between the population genetic structure of the most common host, the little brown myotis (Myotis lucifugus), and the geographic spread of WNS to date by evaluating logistic regression models of WNS risk among hibernating colonies in eastern North America. We hypothesized that risk of WNS to susceptible host colonies should increase with both geographic proximity and genetic similarity, reflecting historical connectivity, to infected colonies. Consistent with this hypothesis, inclusion of genetic distance between infected and susceptible colonies significantly improved models of disease spread, capturing heterogeneity in the spatial expansion of WNS despite low levels of genetic differentiation among eastern populations. Expanding our genetic analysis to the continental range of little brown myotis reveals strongly contrasting patterns of population structure between eastern and western North America. Genetic structure increases markedly moving westward into the northern Great Plains, beyond the current distribution of WNS. In western North America, genetic differentiation of geographically proximate populations often exceeds levels observed across the entire eastern region, suggesting infrequent and/or locally restricted dispersal, and thus relatively limited opportunities for pathogen introduction in western North America. Taken together, our analyses suggest a possibly slower future rate of spread of the WNS pathogen, at least as mediated by little brown myotis.


Assuntos
Quirópteros/genética , Quirópteros/microbiologia , Doenças Transmissíveis Emergentes/veterinária , Genética Populacional , Micoses/veterinária , Animais , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/microbiologia , Geografia , Hibernação , Modelos Teóricos , Micoses/epidemiologia , América do Norte/epidemiologia , Nariz/microbiologia , Dinâmica Populacional , Análise de Sequência de DNA
15.
Mol Ecol ; 24(21): 5364-78, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26414437

RESUMO

Speciation is a continuous and dynamic process, and studying organisms during the early stages of this process can aid in identifying speciation mechanisms. The mallard (Anas platyrhynchos) and Mexican duck (A. [p.] diazi) are two recently diverged taxa with a history of hybridization and controversial taxonomy. To understand their evolutionary history, we conducted genomic scans to characterize patterns of genetic diversity and divergence across the mitochondrial DNA (mtDNA) control region, 3523 autosomal loci and 172 Z-linked sex chromosome loci. Between the two taxa, Z-linked loci (ΦST  = 0.088) were 5.2 times more differentiated than autosomal DNA (ΦST  = 0.017) but comparable to mtDNA (ΦST  = 0.092). This elevated Z differentiation deviated from neutral expectations inferred from simulated data that incorporated demographic history and differences in effective population sizes between marker types. Furthermore, 3% of Z-linked loci, compared to <0.1% of autosomal loci, were detected as outlier loci under divergent selection with elevated relative (ΦST ) and absolute (dXY ) estimates of divergence. In contrast, the ratio of Z-linked and autosomal differentiation among the seven Mexican duck sampling locations was close to 1:1 (ΦST  = 0.018 for both markers). We conclude that between mallards and Mexican ducks, divergence at autosomal markers is largely neutral, whereas greater divergence on the Z chromosome (or some portions thereof) is likely the product of selection that has been important in speciation. Our results contribute to a growing body of literature indicating elevated divergence on the Z chromosome and its likely importance in avian speciation.


Assuntos
Patos/genética , Evolução Molecular , Especiação Genética , Cromossomos Sexuais/genética , Animais , DNA Mitocondrial/genética , Patos/classificação , Genética Populacional , México , Modelos Genéticos , Dados de Sequência Molecular , Densidade Demográfica , Análise de Sequência de DNA , Estados Unidos
16.
J Neural Eng ; 12(5): 056005, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26269496

RESUMO

OBJECTIVE: Studying the brain in large animal models in a restrained laboratory rig severely limits our capacity to examine brain circuits in experimental and clinical applications. APPROACH: To overcome these limitations, we developed a high-fidelity 96-channel wireless system to record extracellular spikes and local field potentials from the neocortex. A removable, external case of the wireless device is attached to a titanium pedestal placed in the animal skull. Broadband neural signals are amplified, multiplexed, and continuously transmitted as TCP/IP data at a sustained rate of 24 Mbps. A Xilinx Spartan 6 FPGA assembles the digital signals into serial data frames for transmission at 20 kHz though an 802.11n wireless data link on a frequency-shift key-modulated signal at 5.7-5.8 GHz to a receiver up to 10 m away. The system is powered by two CR123A, 3 V batteries for 2 h of operation. MAIN RESULTS: We implanted a multi-electrode array in visual area V4 of one anesthetized monkey (Macaca fascicularis) and in the dorsolateral prefrontal cortex (dlPFC) of a freely moving monkey (Macaca mulatta). The implanted recording arrays were electrically stable and delivered broadband neural data over a year of testing. For the first time, we compared dlPFC neuronal responses to the same set of stimuli (food reward) in restrained and freely moving conditions. Although we did not find differences in neuronal responses as a function of reward type in the restrained and unrestrained conditions, there were significant differences in correlated activity. This demonstrates that measuring neural responses in freely moving animals can capture phenomena that are absent in the traditional head-fixed paradigm. SIGNIFICANCE: We implemented a wireless neural interface for multi-electrode recordings in freely moving non-human primates, which can potentially move systems neuroscience to a new direction by allowing one to record neural signals while animals interact with their environment.


Assuntos
Eletrodos Implantados , Eletroencefalografia/instrumentação , Potenciais Evocados/fisiologia , Monitorização Ambulatorial/instrumentação , Neocórtex/fisiologia , Tecnologia sem Fio/instrumentação , Animais , Redes de Comunicação de Computadores/instrumentação , Fontes de Energia Elétrica , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Macaca fascicularis , Macaca mulatta , Masculino , Miniaturização , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Processamento de Sinais Assistido por Computador/instrumentação
17.
Mol Ecol ; 24(10): 2392-405, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25809206

RESUMO

Rapid diversification is often associated with morphological or ecological adaptations that allow organisms to radiate into novel niches. Neotropical Adelpha butterflies, which comprise over 200 species and subspecies, are characterized by extraordinary breadth in host plant use and wing colour patterns compared to their closest relatives. To examine the relationship between phenotypic and species diversification, we reconstructed the phylogenetic history of Adelpha and its temperate sister genus Limenitis using genomewide restriction-site-associated DNA (RAD) sequencing. Despite a declining fraction of shared markers with increasing evolutionary distance, the RAD-Seq data consistently generated well-supported trees using a variety of phylogenetic methods. These well-resolved phylogenies allow the identification of an ecologically important relationship with a toxic host plant family, as well as the confirmation of widespread, convergent wing pattern mimicry throughout the genus. Taken together, our results support the hypothesis that evolutionary innovations in both larvae and adults have permitted the colonization of novel host plants and fuelled adaptive diversification within this large butterfly radiation.


Assuntos
Borboletas/genética , Especiação Genética , Filogenia , Animais , Teorema de Bayes , Modelos Genéticos , Fenótipo , Pigmentação/genética , Análise de Sequência de DNA , Asas de Animais
18.
PLoS One ; 9(9): e106713, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25188270

RESUMO

A growing variety of "genotype-by-sequencing" (GBS) methods use restriction enzymes and high throughput DNA sequencing to generate data for a subset of genomic loci, allowing the simultaneous discovery and genotyping of thousands of polymorphisms in a set of multiplexed samples. We evaluated a "double-digest" restriction-site associated DNA sequencing (ddRAD-seq) protocol by 1) comparing results for a zebra finch (Taeniopygia guttata) sample with in silico predictions from the zebra finch reference genome; 2) assessing data quality for a population sample of indigobirds (Vidua spp.); and 3) testing for consistent recovery of loci across multiple samples and sequencing runs. Comparison with in silico predictions revealed that 1) over 90% of predicted, single-copy loci in our targeted size range (178-328 bp) were recovered; 2) short restriction fragments (38-178 bp) were carried through the size selection step and sequenced at appreciable depth, generating unexpected but nonetheless useful data; 3) amplification bias favored shorter, GC-rich fragments, contributing to among locus variation in sequencing depth that was strongly correlated across samples; 4) our use of restriction enzymes with a GC-rich recognition sequence resulted in an up to four-fold overrepresentation of GC-rich portions of the genome; and 5) star activity (i.e., non-specific cutting) resulted in thousands of "extra" loci sequenced at low depth. Results for three species of indigobirds show that a common set of thousands of loci can be consistently recovered across both individual samples and sequencing runs. In a run with 46 samples, we genotyped 5,996 loci in all individuals and 9,833 loci in 42 or more individuals, resulting in <1% missing data for the larger data set. We compare our approach to similar methods and discuss the range of factors (fragment library preparation, natural genetic variation, bioinformatics) influencing the recovery of a consistent set of loci among samples.


Assuntos
Biologia Computacional/estatística & dados numéricos , Tentilhões/genética , Genoma , Sequenciamento de Nucleotídeos em Larga Escala/estatística & dados numéricos , Técnicas de Amplificação de Ácido Nucleico/estatística & dados numéricos , Passeriformes/genética , Animais , Composição de Bases , Viés , Mapeamento Cromossômico , Biologia Computacional/métodos , Loci Gênicos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Técnicas de Amplificação de Ácido Nucleico/métodos , Polimorfismo de Nucleotídeo Único
19.
Proc Natl Acad Sci U S A ; 108(43): 17738-42, 2011 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-21949391

RESUMO

Parasites that exploit multiple hosts often experience diversifying selection for host-specific adaptations. This can result in multiple strains of host specialists coexisting within a single parasitic species. A long-standing conundrum is how such sympatric host races can be maintained within a single parasitic species in the face of interbreeding among conspecifics specializing on different hosts. Striking examples are seen in certain avian brood parasites such as cuckoos, many of which show host-specific differentiation in traits such as host egg mimicry. Exploiting a Zambian egg collection amassed over several decades and supplemented by recent fieldwork, we show that the brood parasitic Greater Honeyguide Indicator indicator exhibits host-specific differentiation in both egg size and egg shape. Genetic analysis of honeyguide eggs and chicks show that two highly divergent mitochondrial DNA lineages are associated with ground- and tree-nesting hosts, respectively, indicating perfect fidelity to two mutually exclusive sets of host species for millions of years. Despite their age and apparent adaptive diversification, however, these ancient lineages are not cryptic species; a complete lack of differentiation in nuclear genes shows that mating between individuals reared by different hosts is sufficiently frequent to prevent speciation. These results indicate that host specificity is maternally inherited, that host-specific adaptation among conspecifics can be maintained without reproductive isolation, and that host specificity can be remarkably ancient in evolutionary terms.


Assuntos
Adaptação Biológica/fisiologia , Evolução Biológica , Aves/fisiologia , Especificidade de Hospedeiro/fisiologia , Comportamento de Nidação/fisiologia , Filogenia , Simbiose/fisiologia , Análise de Variância , Animais , Sequência de Bases , Primers do DNA/genética , DNA Mitocondrial/genética , Dados de Sequência Molecular , Fenótipo , RNA Ribossômico/genética , Análise de Sequência de DNA , Especificidade da Espécie , Zâmbia , Zigoto/química
20.
Mol Ecol Resour ; 11(6): 1068-75, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21692999

RESUMO

HapSTRs combine information from a microsatellite (or simple tandem repeat, STR) with one or more single nucleotide polymorphisms in the DNA sequence immediately flanking the STR. These loci may offer increased power for the estimation of demographic parameters, but also present some challenges for data collection and analysis. We describe a process for inferring HapSTR alleles, including the flanking haplotypes, STR alleles and their phase relative to each other, directly from DNA sequence electropherograms of PCR products from heterozygous individuals. Our approach eliminates the need for more costly and time-consuming processes, such as cloning or acrylamide gel electrophoresis to separate alleles prior to sequencing.


Assuntos
Alelos , Loci Gênicos/genética , Variação Genética , Haplótipos/genética , Repetições de Microssatélites/genética , Passeriformes/genética , Polimorfismo de Nucleotídeo Único/genética , Animais , Sequência de Bases , Biologia Computacional/métodos , Primers do DNA/genética , Dados de Sequência Molecular , Passeriformes/classificação , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...