Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Fluids Barriers CNS ; 20(1): 79, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37924081

RESUMO

BACKGROUND: The monocarboxylate transporter 8 (MCT8) plays a vital role in maintaining brain thyroid hormone homeostasis. This transmembrane transporter is expressed at the brain barriers, as the blood-brain barrier (BBB), and in neural cells, being the sole known thyroid hormone-specific transporter to date. Inactivating mutations in the MCT8 gene (SLC16A2) cause the Allan-Herndon-Dudley Syndrome (AHDS) or MCT8 deficiency, a rare X-linked disease characterized by delayed neurodevelopment and severe psychomotor disorders. The underlying pathophysiological mechanisms of AHDS remain unclear, and no effective treatments are available for the neurological symptoms of the disease. METHODS: Neurovascular unit ultrastructure was studied by means of transmission electron microscopy. BBB permeability and integrity were evaluated by immunohistochemistry, non-permeable dye infiltration assays and histological staining techniques. Brain blood-vessel density was evaluated by immunofluorescence and magnetic resonance angiography. Finally, angiogenic-related factors expression was evaluated by qRT-PCR. The studies were carried out both in an MCT8 deficient subject and Mct8/Dio2KO mice, an AHDS murine model, and their respective controls. RESULTS: Ultrastructural analysis of the BBB of Mct8/Dio2KO mice revealed significant alterations in neurovascular unit integrity and increased transcytotic flux. We also found functional alterations in the BBB permeability, as shown by an increased presence of peripheral IgG, Sodium Fluorescein and Evans Blue, along with increased brain microhemorrhages. We also observed alterations in the angiogenic process, with reduced blood vessel density in adult mice brain and altered expression of angiogenesis-related factors during brain development. Similarly, AHDS human brain samples showed increased BBB permeability to IgG and decreased blood vessel density. CONCLUSIONS: These findings identify for the first time neurovascular alterations in the MCT8-deficient brain, including a disruption of the integrity of the BBB and alterations in the neurovascular unit ultrastructure as a new pathophysiological mechanism for AHDS. These results open a new field for potential therapeutic targets for the neurological symptoms of these patients and unveils magnetic resonance angiography as a new non-invasive in vivo technique for evaluating the progression of the disease.


Assuntos
Deficiência Intelectual Ligada ao Cromossomo X , Simportadores , Animais , Humanos , Camundongos , Barreira Hematoencefálica/metabolismo , Imunoglobulina G , Deficiência Intelectual Ligada ao Cromossomo X/diagnóstico , Deficiência Intelectual Ligada ao Cromossomo X/genética , Deficiência Intelectual Ligada ao Cromossomo X/patologia , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Hipotonia Muscular/diagnóstico , Hipotonia Muscular/genética , Hipotonia Muscular/metabolismo , Atrofia Muscular/diagnóstico , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Simportadores/genética , Simportadores/metabolismo , Simportadores/uso terapêutico , Hormônios Tireóideos/metabolismo , Hormônios Tireóideos/uso terapêutico
2.
J Neurosci ; 43(18): 3379-3390, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37001992

RESUMO

Early and progressive cortico-striatal circuit alterations have been widely characterized in Huntington's disease (HD) patients. Cortical premotor area, M2 cortex in rodents, is the most affected cortical input to the striatum from early stages in patients and is associated to the motor learning deficits present in HD mice. Yet, M2 cortex sends additional long-range axon collaterals to diverse output brain regions beyond basal ganglia. Here, we aimed to elucidate the contribution of M2 cortex projections to HD pathophysiology in mice. Using fMRI, M2 cortex showed most prominent functional connectivity alterations with the superior colliculus (SC) in symptomatic R6/1 HD male mice. Structural alterations were also detected by tractography, although diffusion weighted imaging measurements suggested preserved SC structure and similar electrophysiological responses were obtained in the SC on optogenetic stimulation of M2 cortical axons. Male and female HD mice showed behavioral alterations linked to SC function, including decreased defensive behavioral responses toward unexpected stimuli, such as a moving robo-beetle, and decreased locomotion on an unexpected flash of light. Additionally, GCamp6f fluorescence recordings with fiber photometry showed that M2 cortex activity was engaged by the presence of a randomly moving robo-bettle, an effect absent in HD male mice. Moreover, acute chemogenetic M2 cortex inhibition in WT mice shift behavioral responses toward an HD phenotype. Collectively, our findings highlight the involvement of M2 cortex activity in visual stimuli-induced behavioral responses, which are deeply altered in the R6/1 HD mouse model.SIGNIFICANCE STATEMENT Understanding brain circuit alterations in brain disorders is critical for developing circuit-based therapeutic interventions. The cortico-striatal circuit is the most prominently disturbed in Huntington's disease (HD); and particularly, M2 cortex has a prominent role. However, the same M2 cortical neurons send additional projections to several brain regions beyond striatum. We characterized new structural and functional circuitry alterations of M2 cortex in HD mouse models and found that M2 cortex projection to the superior colliculus (SC) was deeply impaired. Moreover, we describe differential responses to unexpected sensory stimulus in HD mouse models, which relies on SC function. Our data highlight the involvement of M2 cortex in SC-dependent sensory processing and its alterations in HD pathophysiology.


Assuntos
Doença de Huntington , Camundongos , Masculino , Feminino , Animais , Colículos Superiores , Neurônios/fisiologia , Corpo Estriado , Axônios , Modelos Animais de Doenças , Camundongos Transgênicos
3.
Neuropsychopharmacology ; 48(2): 341-350, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36088492

RESUMO

Peripheral inputs continuously shape brain function and can influence memory acquisition, but the underlying mechanisms have not been fully understood. Cannabinoid type-1 receptor (CB1R) is a well-recognized player in memory performance, and its systemic modulation significantly influences memory function. By assessing low arousal/non-emotional recognition memory in mice, we found a relevant role of peripheral CB1R in memory persistence. Indeed, the peripherally-restricted CB1R specific antagonist AM6545 showed significant mnemonic effects that were occluded in adrenalectomized mice, and after peripheral adrenergic blockade. AM6545 also transiently impaired contextual fear memory extinction. Vagus nerve chemogenetic inhibition reduced AM6545-induced mnemonic effect. Genetic CB1R deletion in dopamine ß-hydroxylase-expressing cells enhanced recognition memory persistence. These observations support a role of peripheral CB1R modulating adrenergic tone relevant for cognition. Furthermore, AM6545 acutely improved brain connectivity and enhanced extracellular hippocampal norepinephrine. In agreement, intra-hippocampal ß-adrenergic blockade prevented AM6545 mnemonic effects. Altogether, we disclose a novel CB1R-dependent peripheral mechanism with implications relevant for lengthening the duration of non-emotional memory.


Assuntos
Norepinefrina , Receptor CB1 de Canabinoide , Animais , Camundongos , Adrenérgicos/farmacologia , Encéfalo , Hipocampo , Norepinefrina/farmacologia , Receptor CB1 de Canabinoide/antagonistas & inibidores
4.
Alzheimers Res Ther ; 14(1): 161, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36324176

RESUMO

OBJECTIVE: The purpose of this study was to examine the levels of cerebrospinal fluid (CSF) apolipoprotein E (apoE) species in Alzheimer's disease (AD) patients. METHODS: We analyzed two CSF cohorts of AD and control individuals expressing different APOE genotypes. Moreover, CSF samples from the TgF344-AD rat model were included. Samples were run in native- and SDS-PAGE under reducing or non-reducing conditions (with or without ß-mercaptoethanol). Immunoprecipitation combined with mass spectrometry or western blotting analyses served to assess the identity of apoE complexes. RESULTS: In TgF344-AD rats expressing a unique apoE variant resembling human apoE4, a ~35-kDa apoE monomer was identified, increasing at 16.5 months compared with wild-types. In humans, apoE isoforms form disulfide-linked dimers in CSF, except apoE4, which lacks a cysteine residue. Thus, controls showed a decrease in the apoE dimer/monomer quotient in the APOE ε3/ε4 group compared with ε3/ε3 by native electrophoresis. A major contribution of dimers was found in APOE ε3/ε4 AD cases, and, unexpectedly, dimers were also found in ε4/ε4 AD cases. Under reducing conditions, two apoE monomeric glycoforms at 36 kDa and at 34 kDa were found in all human samples. In AD patients, the amount of the 34-kDa species increased, while the 36-kDa/34-kDa quotient was lower compared with controls. Interestingly, under reducing conditions, a ~100-kDa apoE complex, the identity of which was confirmed by mass spectrometry, also appeared in human AD individuals across all APOE genotypes, suggesting the occurrence of aberrantly resistant apoE aggregates. A second independent cohort of CSF samples validated these results. CONCLUSION: These results indicate that despite the increase in total apoE content the apoE protein is altered in AD CSF, suggesting that function may be compromised.


Assuntos
Doença de Alzheimer , Humanos , Animais , Ratos , Doença de Alzheimer/líquido cefalorraquidiano , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Apolipoproteína E3/genética , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Genótipo
5.
Sci Rep ; 12(1): 16958, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36216838

RESUMO

Brain damage associated with Alzheimer's disease (AD) occurs even decades before the symptomatic onset, raising the need to investigate its progression from prodromal stages. In this context, animal models that progressively display AD pathological hallmarks (e.g. TgF344-AD) become crucial. Translational technologies, such as magnetic resonance spectroscopy (MRS), enable the longitudinal metabolic characterization of this disease. However, an integrative approach is required to unravel the complex metabolic changes underlying AD progression, from early to advanced stages. TgF344-AD and wild-type (WT) rats were studied in vivo on a 7 Tesla MRI scanner, for longitudinal quantitative assessment of brain metabolic profile changes using MRS. Disease progression was investigated at 4 time points, from 9 to 18 months of age, and in 4 regions: cortex, hippocampus, striatum, and thalamus. Compared to WT, TgF344-AD rats replicated common findings in AD patients, including decreased N-acetylaspartate in the cortex, hippocampus and thalamus, and decreased glutamate in the thalamus and striatum. Different longitudinal evolution of metabolic concentration was observed between TgF344-AD and WT groups. Namely, age-dependent trajectories differed between groups for creatine in the cortex and thalamus and for taurine in cortex, with significant decreases in Tg344-AD animals; whereas myo-inositol in the thalamus and striatum showed greater increase along time in the WT group. Additional analysis revealed divergent intra- and inter-regional metabolic coupling in each group. Thus, in cortex, strong couplings of N-acetylaspartate and creatine with myo-inositol in WT, but with taurine in TgF344-AD rats were observed; whereas in the hippocampus, myo-inositol, taurine and choline compounds levels were highly correlated in WT but not in TgF344-AD animals. Furthermore, specific cortex-hippocampus-striatum metabolic crosstalks were found for taurine levels in the WT group but for myo-inositol levels in the TgF344-AD rats. With a systems biology perspective of metabolic changes in AD pathology, our results shed light into the complex spatio-temporal metabolic rewiring in this disease, reported here for the first time. Age- and tissue-dependent imbalances between myo-inositol, taurine and other metabolites, such as creatine, unveil their role in disease progression, while pointing to the inadequacy of the latter as an internal reference for quantification.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/metabolismo , Animais , Encéfalo/metabolismo , Colina/metabolismo , Creatina/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Ácido Glutâmico/metabolismo , Inositol , Ratos , Taurina
6.
Ann N Y Acad Sci ; 1518(1): 282-298, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36256544

RESUMO

The consequences of extremely intense long-term exercise for brain health remain unknown. We studied the effects of strenuous exercise on brain structure and function, its dose-response relationship, and mechanisms in a rat model of endurance training. Five-week-old male Wistar rats were assigned to moderate (MOD) or intense (INT) exercise or a sedentary (SED) group for 16 weeks. MOD rats showed the highest motivation and learning capacity in operant conditioning experiments; SED and INT presented similar results. In vivo MRI demonstrated enhanced global and regional connectivity efficiency and clustering as well as a higher cerebral blood flow (CBF) in MOD but not INT rats compared with SED. In the cortex, downregulation of oxidative phosphorylation complex IV and AMPK activation denoted mitochondrial dysfunction in INT rats. An imbalance in cortical antioxidant capacity was found between MOD and INT rats. The MOD group showed the lowest hippocampal brain-derived neurotrophic factor levels. The mRNA and protein levels of inflammatory markers were similar in all groups. In conclusion, strenuous long-term exercise yields a lesser improvement in learning ability than moderate exercise. Blunting of MOD-induced improvements in CBF and connectivity efficiency, accompanied by impaired mitochondrial energetics and, possibly, transient local oxidative stress, may underlie the findings in intensively trained rats.


Assuntos
Condicionamento Físico Animal , Ratos , Animais , Masculino , Ratos Wistar , Condicionamento Físico Animal/fisiologia , Estresse Oxidativo , Antioxidantes , Encéfalo
7.
Redox Biol ; 54: 102353, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35777200

RESUMO

Metabolic plasticity is the ability of a biological system to adapt its metabolic phenotype to different environmental stressors. We used a whole-body and tissue-specific phenotypic, functional, proteomic, metabolomic and transcriptomic approach to systematically assess metabolic plasticity in diet-induced obese mice after a combined nutritional and exercise intervention. Although most obesity and overnutrition-related pathological features were successfully reverted, we observed a high degree of metabolic dysfunction in visceral white adipose tissue, characterized by abnormal mitochondrial morphology and functionality. Despite two sequential therapeutic interventions and an apparent global healthy phenotype, obesity triggered a cascade of events in visceral adipose tissue progressing from mitochondrial metabolic and proteostatic alterations to widespread cellular stress, which compromises its biosynthetic and recycling capacity. In humans, weight loss after bariatric surgery showed a transcriptional signature in visceral adipose tissue similar to our mouse model of obesity reversion. Overall, our data indicate that obesity prompts a lasting metabolic fingerprint that leads to a progressive breakdown of metabolic plasticity in visceral adipose tissue.


Assuntos
Resistência à Insulina , Tecido Adiposo/metabolismo , Animais , Homeostase , Gordura Intra-Abdominal/metabolismo , Camundongos , Obesidade/genética , Obesidade/metabolismo , Proteômica
8.
Front Cell Neurosci ; 16: 856855, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35548372

RESUMO

Brain electrical stimulation techniques take advantage of the intrinsic plasticity of the nervous system, opening a wide range of therapeutic applications. Vagus nerve stimulation (VNS) is an approved adjuvant for drug-resistant epilepsy and depression. Its non-invasive form, auricular transcutaneous VNS (atVNS), is under investigation for applications, including cognitive improvement. We aimed to study the effects of atVNS on brain connectivity, under conditions that improved memory persistence in CD-1 male mice. Acute atVNS in the cymba conchae of the left ear was performed using a standard stimulation protocol under light isoflurane anesthesia, immediately or 3 h after the training/familiarization phase of the novel object-recognition memory test (NORT). Another cohort of mice was used for bilateral c-Fos analysis after atVNS administration. Spearman correlation of c-Fos density between each pair of the thirty brain regions analyzed allowed obtaining the network of significant functional connections in stimulated and non-stimulated control brains. NORT performance was enhanced when atVNS was delivered just after, but not 3 h after, the familiarization phase of the task. No alterations in c-Fos density were associated with electrostimulation, but a significant effect of atVNS was observed on c-Fos-based functional connectivity. atVNS induced a clear reorganization of the network, increasing the inter-hemisphere connections and the connectivity of locus coeruleus. Our results provide new insights into the effects of atVNS on memory performance and brain connectivity extending our knowledge of the biological mechanisms of bioelectronics in medicine.

9.
Nat Metab ; 4(4): 424-434, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379970

RESUMO

Preparation for motherhood requires a myriad of physiological and behavioural adjustments throughout gestation to provide an adequate environment for proper embryonic development1. Cravings for highly palatable foods are highly prevalent during pregnancy2 and contribute to the maintenance and development of gestational overweight or obesity3. However, the neurobiology underlying the distinct ingestive behaviours that result from craving specific foods remain unknown. Here we show that mice, similarly to humans, experience gestational food craving-like episodes. These episodes are associated with a brain connectivity reorganization that affects key components of the dopaminergic mesolimbic circuitry, which drives motivated appetitive behaviours and facilitates the perception of rewarding stimuli. Pregnancy engages a dynamic modulation of dopaminergic signalling through neurons expressing dopamine D2 receptors in the nucleus accumbens, which directly modulate food craving-like events. Importantly, persistent maternal food craving-like behaviour has long-lasting effects on the offspring, particularly in males, leading to glucose intolerance, increased body weight and increased susceptibility to develop eating disorders and anxiety-like behaviours during adulthood. Our results reveal the cognitively motivated nature of pregnancy food cravings and advocates for moderating emotional eating during gestation to prevent deterioration of the offspring's neuropsychological and metabolic health.


Assuntos
Fissura , Ingestão de Alimentos , Animais , Fissura/fisiologia , Dopamina/metabolismo , Feminino , Preferências Alimentares/psicologia , Masculino , Camundongos , Obesidade/metabolismo , Gravidez , Aumento de Peso
10.
Commun Biol ; 4(1): 1192, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34654883

RESUMO

DHX15 is a downstream substrate for Akt1, which is involved in key cellular processes affecting vascular biology. Here, we explored the vascular regulatory function of DHX15. Homozygous DHX15 gene deficiency was lethal in mouse and zebrafish embryos. DHX15-/- zebrafish also showed downregulation of VEGF-C and reduced formation of lymphatic structures during development. DHX15+/- mice depicted lower vascular density and impaired lymphatic function postnatally. RNAseq and proteome analysis of DHX15 silenced endothelial cells revealed differential expression of genes involved in the metabolism of ATP biosynthesis. The validation of these results demonstrated a lower activity of the Complex I in the mitochondrial membrane of endothelial cells, resulting in lower intracellular ATP production and lower oxygen consumption. After injection of syngeneic LLC1 tumor cells, DHX15+/- mice showed partially inhibited primary tumor growth and reduced lung metastasis. Our results revealed an important role of DHX15 in vascular physiology and pave a new way to explore its potential use as a therapeutical target for metastasis treatment.


Assuntos
Metabolismo Energético , Sistema Linfático/patologia , Metástase Neoplásica , RNA Helicases/deficiência , Animais , Embrião de Mamíferos/metabolismo , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Endotélio/metabolismo , Camundongos , Camundongos Transgênicos/embriologia , Neoplasias , Peixe-Zebra/embriologia
11.
Brain Struct Funct ; 226(8): 2603-2616, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34363521

RESUMO

Ketamine has rapid and robust antidepressant effects. However, unwanted psychotomimetic effects limit its widespread use. Hence, several studies examined whether GluN2B-subunit selective NMDA antagonists would exhibit a better therapeutic profile. Although preclinical work has revealed some of the mechanisms of action of ketamine at cellular and molecular levels, the impact on brain circuitry is poorly understood. Several neuroimaging studies have examined the functional changes in the brain induced by acute administration of ketamine and Ro 25-6981 (a GluN2B-subunit selective antagonist), but the changes in the microstructure of gray and white matter have received less attention. Here, the effects of ketamine and Ro 25-6981 on gray and white matter integrity in male Sprague-Dawley rats were determined using diffusion-weighted magnetic resonance imaging (DWI). In addition, DWI-based structural brain networks were estimated and connectivity metrics were computed at the regional level. Immunohistochemical analyses were also performed to determine whether changes in myelin basic protein (MBP) and neurofilament heavy-chain protein (NF200) may underlie connectivity changes. In general, ketamine and Ro 25-6981 showed some opposite structural alterations, but both compounds coincided only in increasing the fractional anisotropy in infralimbic prefrontal cortex and dorsal raphe nucleus. These changes were associated with increments of NF200 in deep layers of the infralimbic cortex (together with increased MBP) and the dorsal raphe nucleus. Our results suggest that the synthesis of NF200 and MBP may contribute to the formation of new dendritic spines and myelination, respectively. We also suggest that the increase of fractional anisotropy of the infralimbic and dorsal raphe nucleus areas could represent a biomarker of a rapid antidepressant response.


Assuntos
Antidepressivos , Ketamina , Fenóis , Piperidinas , Animais , Antidepressivos/farmacologia , Núcleo Dorsal da Rafe , Ketamina/farmacologia , Imageamento por Ressonância Magnética , Masculino , Fenóis/metabolismo , Piperidinas/metabolismo , Córtex Pré-Frontal , Ratos , Ratos Sprague-Dawley
12.
Elife ; 92020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-33016873

RESUMO

Huntington's disease (HD) is a neurological disorder characterized by motor disturbances. HD pathology is most prominent in the striatum, the central hub of the basal ganglia. The cerebral cortex is the main striatal afferent, and progressive cortico-striatal disconnection characterizes HD. We mapped striatal network dysfunction in HD mice to ultimately modulate the activity of a specific cortico-striatal circuit to ameliorate motor symptoms and recover synaptic plasticity. Multimodal MRI in vivo indicates cortico-striatal and thalamo-striatal functional network deficits and reduced glutamate/glutamine ratio in the striatum of HD mice. Moreover, optogenetically-induced glutamate release from M2 cortex terminals in the dorsolateral striatum (DLS) was undetectable in HD mice and striatal neurons show blunted electrophysiological responses. Remarkably, repeated M2-DLS optogenetic stimulation normalized motor behavior in HD mice and evoked a sustained increase of synaptic plasticity. Overall, these results reveal that selective stimulation of the M2-DLS pathway can become an effective therapeutic strategy in HD.


Assuntos
Córtex Cerebral , Corpo Estriado , Estimulação Elétrica , Doença de Huntington/fisiopatologia , Animais , Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Córtex Cerebral/efeitos da radiação , Corpo Estriado/citologia , Corpo Estriado/fisiologia , Corpo Estriado/efeitos da radiação , Ácido Glutâmico/metabolismo , Camundongos , Atividade Motora/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Optogenética
13.
Netw Neurosci ; 4(2): 397-415, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32537533

RESUMO

The research of Alzheimer's disease (AD) in its early stages and its progression till symptomatic onset is essential to understand the pathology and investigate new treatments. Animal models provide a helpful approach to this research, since they allow for controlled follow-up during the disease evolution. In this work, transgenic TgF344-AD rats were longitudinally evaluated starting at 6 months of age. Every 3 months, cognitive abilities were assessed by a memory-related task and magnetic resonance imaging (MRI) was acquired. Structural and functional brain networks were estimated and characterized by graph metrics to identify differences between the groups in connectivity, its evolution with age, and its influence on cognition. Structural networks of transgenic animals were altered since the earliest stage. Likewise, aging significantly affected network metrics in TgF344-AD, but not in the control group. In addition, while the structural brain network influenced cognitive outcome in transgenic animals, functional network impacted how control subjects performed. TgF344-AD brain network alterations were present from very early stages, difficult to identify in clinical research. Likewise, the characterization of aging in these animals, involving structural network reorganization and its effects on cognition, opens a window to evaluate new treatments for the disease.

14.
Front Aging Neurosci ; 11: 213, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31440158

RESUMO

A better and non-invasive characterization of the preclinical phases of Alzheimer's disease (AD) is important to advance its diagnosis and obtain more effective benefits from potential treatments. The TgF344-AD rat model has been well characterized and shows molecular, behavioral and brain connectivity alterations that resemble the silent period of the pathology. Our aim was to longitudinally investigate functional brain connectivity in established resting-state networks (RSNs) obtained by independent component analysis (ICA) in a cohort of TgF344-AD and control rats every 3 months, from 5 to 18 months of age, to cover different stages of the disease. Before each acquisition, working memory performance was evaluated by the delayed non match-to-sample (DNMS) task. Differences in the temporal evolution were observed between groups in the amplitude and shape of the somatosensorial and sensorimotor networks but not in the whole default mode network (DMN). Subsequent high dimensional ICA analysis showed early alterations in the anterior DMN subnetwork activity of TgF344-AD rats compared to controls. Performance of DNMS task was positively correlated with somatosensorial network at 5 months of age in the wild-type (WT) animals but not in the Tg-F344 rats. At different time points, DMN showed negative correlation with cognitive performance in the control group while in the transgenic group the correlation was positive. In addition, behavioral differences observed at 5 months of age correlated with alterations in the posterior DMN subnetwork. We have demonstrated that functional connectivity using ICA represents a useful biomarker also in animal models of AD such as the TgF344AD rats, as it allows the identification of alterations associated with the progression of the disease, detecting differences in specific networks even at very early stages.

15.
Oper Neurosurg (Hagerstown) ; 16(2): 239-249, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29750275

RESUMO

BACKGROUND: Treatment of intrinsic lesions of the ventral brainstem is a surgical challenge that requires complex skull base antero- and posterolateral approaches. More recently, endoscopic endonasal transclival approach (EETA) has been reported in the treatment of selected ventral brainstem lesions. OBJECTIVE: In this study we explored the endoscopic ventral brainstem anatomy with the aim to describe the degree of exposure of the ventral safe entry zones. In addition, we used a newly developed method combining traditional white matter dissection with high-resolution 7T magnetic resonance imaging (MRI) of the same specimen coregistered using a neuronavigation system. METHODS: Eight fresh-frozen latex-injected cadaver heads underwent EETA. Additional 8 formalin-fixed brainstems were dissected using Klingler technique guided by ultra-high resolution MRI. RESULTS: The EETA allows a wide exposure of different safe entry zones located on the ventral brainstem: the exposure of perioculomotor zone requires pituitary transposition and can be hindered by superior cerebellar artery. The peritrigeminal zone was barely visible and its exposure required an extradural anterior petrosectomy. The anterolateral sulcus of the medulla was visible in most of specimens, although its close relationship with the corticospinal tract makes it suboptimal as an entry point for intrinsic lesions. In all cases, the use of 7T-MRI allowed the identification of tiny fiber bundles, improving the quality of the dissection. CONCLUSION: Exposure of the ventral brainstem with EETA requires mastering surgical maneuvers, including pituitary transposition and extradural petrosectomy. The correlation of fiber dissection with 7T-MRI neuronavigation significantly improves the understanding of the brainstem anatomy.


Assuntos
Tronco Encefálico/cirurgia , Imageamento por Ressonância Magnética , Neuroendoscopia/métodos , Neuronavegação , Cadáver , Fossa Craniana Posterior , Dissecação , Humanos , Cavidade Nasal , Osso Petroso/cirurgia , Hipófise/cirurgia , Cirurgia Assistida por Computador
16.
Alzheimers Res Ther ; 10(1): 16, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29415770

RESUMO

BACKGROUND: Animal models of Alzheimer's disease (AD) are essential to understanding the disease progression and to development of early biomarkers. Because AD has been described as a disconnection syndrome, magnetic resonance imaging (MRI)-based connectomics provides a highly translational approach to characterizing the disruption in connectivity associated with the disease. In this study, a transgenic rat model of AD (TgF344-AD) was analyzed to describe both cognitive performance and brain connectivity at an early stage (5 months of age) before a significant concentration of ß-amyloid plaques is present. METHODS: Cognitive abilities were assessed by a delayed nonmatch-to-sample (DNMS) task preceded by a training phase where the animals learned the task. The number of training sessions required to achieve a learning criterion was recorded and evaluated. After DNMS, MRI acquisition was performed, including diffusion-weighted MRI and resting-state functional MRI, which were processed to obtain the structural and functional connectomes, respectively. Global and regional graph metrics were computed to evaluate network organization in both transgenic and control rats. RESULTS: The results pointed to a delay in learning the working memory-related task in the AD rats, which also completed a lower number of trials in the DNMS task. Regarding connectivity properties, less efficient organization of the structural brain networks of the transgenic rats with respect to controls was observed. Specific regional differences in connectivity were identified in both structural and functional networks. In addition, a strong correlation was observed between cognitive performance and brain networks, including whole-brain structural connectivity as well as functional and structural network metrics of regions related to memory and reward processes. CONCLUSIONS: In this study, connectivity and neurocognitive impairments were identified in TgF344-AD rats at a very early stage of the disease when most of the pathological hallmarks have not yet been detected. Structural and functional network metrics of regions related to reward, memory, and sensory performance were strongly correlated with the cognitive outcome. The use of animal models is essential for the early identification of these alterations and can contribute to the development of early biomarkers of the disease based on MRI connectomics.


Assuntos
Doença de Alzheimer/fisiopatologia , Encéfalo/fisiopatologia , Disfunção Cognitiva/fisiopatologia , Envelhecimento/fisiologia , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/psicologia , Animais , Encéfalo/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Conectoma , Modelos Animais de Doenças , Aprendizagem/fisiologia , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiopatologia , Placa Amiloide/fisiopatologia , Ratos Endogâmicos F344 , Ratos Transgênicos , Descanso
17.
Methods Mol Biol ; 1718: 189-202, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29341010

RESUMO

Proton MR spectroscopic imaging (MRSI) can provide a variety of "molecular images" from animal models of human disease, which are useful for different research purposes. This chapter describes a protocol for in vivo acquisition and analysis of MRSI data from the rodent brain.


Assuntos
Encéfalo/metabolismo , Neuroimagem Funcional/métodos , Hidrogênio/metabolismo , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Prótons por Ressonância Magnética/métodos , Animais , Roedores
19.
PLoS One ; 12(1): e0170703, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28118397

RESUMO

Diffusion-weighted imaging (DWI) quantifies water molecule diffusion within tissues and is becoming an increasingly used technique. However, it is very challenging as correct quantification depends on many different factors, ranging from acquisition parameters to a long pipeline of image processing. In this work, we investigated the influence of voxel geometry on diffusion analysis, comparing different acquisition orientations as well as isometric and anisometric voxels. Diffusion-weighted images of one rat brain were acquired with four different voxel geometries (one isometric and three anisometric in different directions) and three different encoding orientations (coronal, axial and sagittal). Diffusion tensor scalar measurements, tractography and the brain structural connectome were analyzed for each of the 12 acquisitions. The acquisition direction with respect to the main magnetic field orientation affected the diffusion results. When the acquisition slice-encoding direction was not aligned with the main magnetic field, there were more artifacts and a lower signal-to-noise ratio that led to less anisotropic tensors (lower fractional anisotropic values), producing poorer quality results. The use of anisometric voxels generated statistically significant differences in the values of diffusion metrics in specific regions. It also elicited differences in tract reconstruction and in different graph metric values describing the brain networks. Our results highlight the importance of taking into account the geometric aspects of acquisitions, especially when comparing diffusion data acquired using different geometries.


Assuntos
Encéfalo/anatomia & histologia , Conectoma , Imagem de Tensor de Difusão/métodos , Animais , Anisotropia , Artefatos , Água Corporal , Difusão , Processamento de Imagem Assistida por Computador/métodos , Masculino , Ratos , Ratos Wistar , Razão Sinal-Ruído , Substância Branca/anatomia & histologia
20.
J Neurochem ; 140(3): 509-521, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27874975

RESUMO

Hypertension is a main risk factor for the development of cerebral small vessel disease (cSVD) - a major contributor to stroke and the most common cause of vascular dementia. Despite the increasing socioeconomic importance arising from cSVD, currently only a few specific treatment strategies with proven efficacy are known. Fundamental to the lack of specific treatments is poor understanding of the disease pathogenesis and a lack of appropriate animal models resembling all symptoms of the human disease. However, chronic hypertensive rat models have been shown to bear similarities to most key features of cSVD. Despite a significantly larger toolbox available for genotypic and phenotypic modifications compared to rats, mouse models of hypertension are unusual when modeling cSVD and associated cognitive impairment experimentally. In the present study, we therefore characterized hypertension-mediated cerebrovascular alterations and accompanying structural and functional consequences by simultaneously treating adult wild-type mice (C57BL/6N) with Angiotensin II (AngII) and the nitric oxide synthases inhibitor L-NAME for 4 weeks. Hypertension associated to cerebral alterations reminiscent of early-onset cSVD and vascular cognitive impairment when combined with additional AngII bolus injections. Most importantly, preventing the elevation of blood pressure (BP) protected from the development of cSVD symptoms and associated cognitive decline. Our data strongly support the suitability of this particular mouse model of AngII-induced hypertension as an appropriate animal model for early-onset cSVD and hence, vascular cognitive impairment, pathologies commonly preceding vascular dementia.


Assuntos
Angiotensina II/toxicidade , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Modelos Animais de Doenças , Hipertensão/induzido quimicamente , Hipertensão/patologia , Animais , Encéfalo/metabolismo , Feminino , Hipertensão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...