Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Prenat Diagn ; 44(3): 304-316, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38411249

RESUMO

OBJECTIVE: To clinically assess a cell-based noninvasive prenatal genetic test using sequence-based copy number analysis of single trophoblasts from maternal blood. METHODS: Blood was obtained from 401 (243 + 158) individuals (8-22 weeks) and shipped overnight. Red cells were lysed, and nucleated cells stained for cytokeratin (CK) and CD45 and enriched for positive CK staining. Automated scanning was used to identify and pick single CK+ /CD45- trophoblasts which were subjected to next-generation sequencing. RESULTS: Blood was obtained from 243 pregnancies scheduled for CVS or amniocentesis. Luna results were normal for 160 singletons while 15 cases were abnormal (14 aneuploidy and one monozygotic twin with Williams syndrome deletion). The deletion was confirmed in both fetuses. Placental mosaicism occurred in 7 of 236 (3.0%) Luna cases and in 3 of 188 (1.6%) CVS cases (total 4.6%). No scorable trophoblasts were recovered in 32 of 236 usable samples. Additionally, 158 low-risk pregnancies not undergoing CVS/amniocentesis showed normal results in 133 cases. Seven had aneuploidy results, and there were three likely pathogenic deletions/duplications, including one15q11-q13 deletion. CONCLUSION: Although the sample size is modest and statistically accurate measures of test performance are not possible, the Luna test detected aneuploidy and deletions/duplications based on concordance with CVS/amniocentesis.


Assuntos
Placenta , Diagnóstico Pré-Natal , Gravidez , Humanos , Feminino , Diagnóstico Pré-Natal/métodos , Amniocentese , Aneuploidia , Mosaicismo , Testes Genéticos
2.
Methods Mol Biol ; 2626: 151-177, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36715904

RESUMO

Somatic follicle cells are critical support cells for Drosophila oogenesis, as they provide signals and molecules needed to produce a mature egg. Throughout this process, the follicle cells differentiate into multiple subpopulations and transition between three different cell cycle programs to support nurse cell and oocyte development. The follicle cells are mitotic in early egg chamber development, as they cover the germline cyst. In mid-oogenesis, follicle cells switch from mitosis to endocycling, increasing their ploidy from 2C to 16C. Finally, in late oogenesis, cells transition from endocycling to gene amplification, increasing the copy number of a small subset of genes, including the genes encoding proteins required for egg maturation. In order to explore the genetic regulation of these cell cycle switches and follicle cell development and specification, clonal analysis and the GAL4/UAS system are used frequently to reduce or increase expression of genes of interest. These genetic approaches combined with immunohistochemistry and in situ hybridization are powerful tools for characterizing the mechanisms regulating follicle cell development and the mitosis/endocycle and endocycle/gene amplification transitions. This chapter describes the genetic tools available to manipulate gene expression in follicle cells, as well as the methods and reagents that can be utilized to explore gene expression throughout follicle cell development.


Assuntos
Proteínas de Drosophila , Animais , Proteínas de Drosophila/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia , Oogênese/genética , Drosophila/genética , Drosophila/metabolismo , Drosophila melanogaster/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...