Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Oncogenesis ; 12(1): 30, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37237004

RESUMO

Chemotherapy remains the mainstay of treatment for patients with advanced liposarcoma (LPS), but response rates are only 25% and the overall survival at 5 years is dismal at 20-34%. Translation of other therapies have not been successful and there has been no significant improvement in prognosis for nearly 20 years. The aberrant activation of the phosphatidylinositol 3-kinase (PI3K)/AKT pathway has been implicated in the aggressive clinical behavior LPS and in resistance to chemotherapy, but the precise mechanism remains elusive and efforts to target AKT clinically have failed. Here we show that the AKT-mediated phosphorylation of the transcription elongation factor IWS1, promotes the maintenance of cancer stem cells in both cell and xenograft models of LPS. In addition, phosphorylation of IWS1 by AKT contributes to a "metastable" cell phenotype, characterized by mesenchymal/epithelial plasticity. The expression of phosphorylated IWS1 also promotes anchorage-dependent and independent growth, cell migration, invasion, and tumor metastasis. In patients with LPS, IWS1 expression is associated with reduced overall survival, increased frequency of recurrence, and shorter time to relapse after resection. These findings indicate that IWS1-mediated transcription elongation is an important regulator of human LPS pathobiology in an AKT-dependent manner and implicate IWS1 as an important molecular target to treat LPS.

2.
Adv Wound Care (New Rochelle) ; 12(2): 68-84, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35951024

RESUMO

Significance: Laser use has become part of the gold standard of treatment as an effective adjuvant in multimodal therapy for pathologic scarring caused by burns, trauma, acne, and surgery, as well as vascular anomalies. Understanding indications and applications for laser therapy is essential for physicians to improve patient outcomes. Recent Advances: Since the 1980s, the medical use of lasers has continuously evolved with improvements in technology. Novel lasers and fractionated technologies are currently being studied in the hopes to improve treatment efficacy, while reducing complications. Recent advancements include acne treatment with novel picosecond lasers, new hypertrophic scar therapies with simultaneous laser and intense pulsed light use, and novel systems such as lasers with intralesional optical fiber delivery devices. In addition, optimizing the timing of laser therapy and its use in multimodal treatments continue to advance the field of photothermolysis. Critical Issues: Selecting the correct laser for a given indication is the fundamental decision when choosing a laser balancing effective treatment with minimal complications. This article covers the principles of laser therapy, the preferred lasers used for the treatment of scarring and vascular anomalies, and discusses the current evidence behind these laser choices. Future Directions: To optimize laser therapy, larger randomized control trials and split scar studies are needed. Continued advancement through better randomized controlled studies will help to improve patient outcomes on a broader scale.


Assuntos
Acne Vulgar , Cicatriz Hipertrófica , Terapia a Laser , Terapia com Luz de Baixa Intensidade , Doenças Vasculares , Malformações Vasculares , Humanos , Cicatriz Hipertrófica/radioterapia , Cicatriz Hipertrófica/cirurgia , Acne Vulgar/complicações , Acne Vulgar/cirurgia , Resultado do Tratamento , Doenças Vasculares/complicações , Doenças Vasculares/cirurgia , Malformações Vasculares/cirurgia , Malformações Vasculares/complicações
3.
JCI Insight ; 7(20)2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36099022

RESUMO

Transforming growth factor-ß1 (TGF-ß1) plays a central role in normal and aberrant wound healing, but the precise mechanism in the local environment remains elusive. Here, using a mouse model of aberrant wound healing resulting in heterotopic ossification (HO) after traumatic injury, we find autocrine TGF-ß1 signaling in macrophages, and not mesenchymal stem/progenitor cells, is critical in HO formation. In-depth single-cell transcriptomic and epigenomic analyses in combination with immunostaining of cells from the injury site demonstrated increased TGF-ß1 signaling in early infiltrating macrophages, with open chromatin regions in TGF-ß1-stimulated genes at binding sites specific for transcription factors of activated TGF-ß1 (SMAD2/3). Genetic deletion of TGF-ß1 receptor type 1 (Tgfbr1; Alk5), in macrophages, resulted in increased HO, with a trend toward decreased tendinous HO. To bypass the effect seen by altering the receptor, we administered a systemic treatment with TGF-ß1/3 ligand trap TGF-ßRII-Fc, which resulted in decreased HO formation and a delay in macrophage infiltration to the injury site. Overall, our data support the role of the TGF-ß1/ALK5 signaling pathway in HO.


Assuntos
Ossificação Heterotópica , Fator de Crescimento Transformador beta1 , Humanos , Cromatina/metabolismo , Ligantes , Macrófagos/metabolismo , Ossificação Heterotópica/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Fator de Crescimento Transformador beta1/metabolismo , Cicatrização , Fator de Crescimento Transformador beta/metabolismo
4.
Nat Commun ; 12(1): 4939, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34400627

RESUMO

Pain is a central feature of soft tissue trauma, which under certain contexts, results in aberrant osteochondral differentiation of tissue-specific stem cells. Here, the role of sensory nerve fibers in this abnormal cell fate decision is investigated using a severe extremity injury model in mice. Soft tissue trauma results in NGF (Nerve growth factor) expression, particularly within perivascular cell types. Consequently, NGF-responsive axonal invasion occurs which precedes osteocartilaginous differentiation. Surgical denervation impedes axonal ingrowth, with significant delays in cartilage and bone formation. Likewise, either deletion of Ngf or two complementary methods to inhibit its receptor TrkA (Tropomyosin receptor kinase A) lead to similar delays in axonal invasion and osteochondral differentiation. Mechanistically, single-cell sequencing suggests a shift from TGFß to FGF signaling activation among pre-chondrogenic cells after denervation. Finally, analysis of human pathologic specimens and databases confirms the relevance of NGF-TrkA signaling in human disease. In sum, NGF-mediated TrkA-expressing axonal ingrowth drives abnormal osteochondral differentiation after soft tissue trauma. NGF-TrkA signaling inhibition may have dual therapeutic use in soft tissue trauma, both as an analgesic and negative regulator of aberrant stem cell differentiation.


Assuntos
Diferenciação Celular , Fator de Crescimento Neural/metabolismo , Receptor trkA/metabolismo , Transdução de Sinais , Ferimentos e Lesões/metabolismo , Animais , Axônios/metabolismo , Cartilagem/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fator de Crescimento Neural/genética , Osteogênese , Células-Tronco/metabolismo , Ferimentos e Lesões/patologia
5.
J Immunol ; 204(8): 2203-2215, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32161098

RESUMO

Myeloid cells are critical to the development of fibrosis following muscle injury; however, the mechanism of their role in fibrosis formation remains unclear. In this study, we demonstrate that myeloid cell-derived TGF-ß1 signaling is increased in a profibrotic ischemia reperfusion and cardiotoxin muscle injury model. We found that myeloid-specific deletion of Tgfb1 abrogates the fibrotic response in this injury model and reduces fibro/adipogenic progenitor cell proliferation while simultaneously enhancing muscle regeneration, which is abrogated by adaptive transfer of normal macrophages. Similarly, a murine TGFBRII-Fc ligand trap administered after injury significantly reduced muscle fibrosis and improved muscle regeneration. This study ultimately demonstrates that infiltrating myeloid cell TGF-ß1 is responsible for the development of traumatic muscle fibrosis, and its blockade offers a promising therapeutic target for preventing muscle fibrosis after ischemic injury.


Assuntos
Fibrose/imunologia , Fibrose/patologia , Macrófagos/imunologia , Músculo Esquelético/imunologia , Músculo Esquelético/patologia , Células Mieloides/imunologia , Fator de Crescimento Transformador beta1/imunologia , Animais , Cardiotoxinas , Fibrose/complicações , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células Mieloides/patologia , Fenótipo , Traumatismo por Reperfusão/induzido quimicamente , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/imunologia
6.
Nat Commun ; 11(1): 722, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32024825

RESUMO

Heterotopic ossification (HO) is an aberrant regenerative process with ectopic bone induction in response to musculoskeletal trauma, in which mesenchymal stem cells (MSC) differentiate into osteochondrogenic cells instead of myocytes or tenocytes. Despite frequent cases of hospitalized musculoskeletal trauma, the inflammatory responses and cell population dynamics that regulate subsequent wound healing and tissue regeneration are still unclear. Here we examine, using a mouse model of trauma-induced HO, the local microenvironment of the initial post-injury inflammatory response. Single cell transcriptome analyses identify distinct monocyte/macrophage populations at the injury site, with their dynamic changes over time elucidated using trajectory analyses. Mechanistically, transforming growth factor beta-1 (TGFß1)-producing monocytes/macrophages are associated with HO and aberrant chondrogenic progenitor cell differentiation, while CD47-activating peptides that reduce systemic macrophage TGFß levels and help ameliorate HO. Our data thus implicate CD47 activation as a therapeutic approach for modulating monocyte/macrophage phenotypes, MSC differentiation and HO formation during wound healing.


Assuntos
Queimaduras/patologia , Monócitos/patologia , Ossificação Heterotópica/patologia , Cicatrização/fisiologia , Animais , Antígeno CD47/metabolismo , Diferenciação Celular , Citocinas/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Macrófagos/patologia , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Peptídeos/farmacologia , Fagocitose , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
7.
Bone Res ; 7: 36, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31840004

RESUMO

Heterotopic ossification (HO) is a debilitating condition characterized by the pathologic formation of ectopic bone. HO occurs commonly following orthopedic surgeries, burns, and neurologic injuries. While surgical excision may provide palliation, the procedure is often burdened with significant intra-operative blood loss due to a more robust contribution of blood supply to the pathologic bone than to native bone. Based on these clinical observations, we set out to examine the role of vascular signaling in HO. Vascular endothelial growth factor A (VEGFA) has previously been shown to be a crucial pro-angiogenic and pro-osteogenic cue during normal bone development and homeostasis. Our findings, using a validated mouse model of HO, demonstrate that HO lesions are highly vascular, and that VEGFA is critical to ectopic bone formation, despite lacking a contribution of endothelial cells within the developing anlagen.

8.
J Burn Care Res ; 40(4): 398-405, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31053861

RESUMO

Oxandrolone, a testosterone analog, is used to counteract the catabolic effects of burn injury. Recent animal studies suggest a possible hormonal association with heterotopic ossification (HO) development postburn. This work examines oxandrolone administration and HO development by exploring historical clinical data bridging the introduction of oxandrolone into clinical practice. Additionally, we examine associations between oxandrolone administration and HO in a standardized mouse model of burn/trauma-related HO. Acutely burned adults admitted between 2000 and 2014, survived through discharge, and had a HO risk factor of 7 or higher were selected for analysis from a single burn center. Oxandrolone administration, clinical and demographic data, and elbow HO were recorded and were analyzed with logistic regression. Associations of oxandrolone with HO were examined in a mouse model. Mice were administered oxandrolone or vehicle control following burn/tenotomy to examine any potential effect of oxandrolone on HO and were analyzed by Student's t test. Subjects who received oxandrolone had a higher incidence of elbow HO than those that did not receive oxandrolone. However, when controlling for oxandrolone administration, oxandrolone duration, postburn day oxandrolone initiation, HO risk score category, age, sex, race, burn size, and year of injury, there was no significant difference between rates of elbow HO between the two populations. In agreement with the review, in the mouse model, while there was a trend toward the oxandrolone group developing a greater volume of HO, this did not reach statistical significance.


Assuntos
Anabolizantes/efeitos adversos , Queimaduras/tratamento farmacológico , Ossificação Heterotópica/induzido quimicamente , Oxandrolona/administração & dosagem , Cicatrização/efeitos dos fármacos , Adulto , Anabolizantes/uso terapêutico , Animais , Queimaduras/fisiopatologia , Feminino , Humanos , Masculino , Camundongos , Modelos Animais , Ossificação Heterotópica/prevenção & controle , Oxandrolona/uso terapêutico , Fatores de Risco , Resultado do Tratamento
9.
Am J Pathol ; 188(11): 2464-2473, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30142335

RESUMO

Heterotopic ossification (HO) occurs secondary to trauma, causing pain and functional limitations. Identification of the cells that contribute to HO is critical to the development of therapies. Given that innate immune cells and mesenchymal stem cells are known contributors to HO, we sought to define the contribution of these populations to HO and to identify what, if any, contribution circulating populations have to HO. A shared circulation was obtained using a parabiosis model, established between an enhanced green fluorescent protein-positive/luciferase+ donor and a same-strain nonreporter recipient mouse. The nonreporter mouse received Achilles tendon transection and dorsal burn injury to induce HO formation. Bioluminescence imaging and immunostaining were performed to define the circulatory contribution of immune and mesenchymal cell populations. Histologic analysis showed circulating cells present throughout each stage of the developing HO anlagen. Circulating cells were present at the injury site during the inflammatory phase and proliferative period, with diminished contribution in mature HO. Immunostaining demonstrated that most early circulatory cells were from the innate immune system; only a small population of mesenchymal cells were present in the HO. We demonstrate the time course of the participation of circulatory cells in trauma-induced HO and identify populations of circulating cells present in different stages of HO. These findings further elucidate the relative contribution of local and systemic cell populations to HO.


Assuntos
Queimaduras/complicações , Modelos Animais de Doenças , Inflamação/patologia , Células-Tronco Mesenquimais/patologia , Ossificação Heterotópica/patologia , Animais , Feminino , Inflamação/sangue , Inflamação/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Ossificação Heterotópica/sangue , Ossificação Heterotópica/etiologia , Osteogênese , Transdução de Sinais
10.
Clin Plast Surg ; 44(4): 749-755, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28888300

RESUMO

Burns and trauma cause superficial and deep soft tissue wounds that cannot heal to the preinjury state. Healing requires cell proliferation and differentiation into the injured tissue type, laying down extracellular matrix, often as collagens. Heterotopic ossification causes severe pain, nonhealing wounds, and restricted range of motion. Treatment includes radiation therapy, nonsteroidal anti-inflammatory drugs, bisphosphonates, and possibly surgical excision and prophylactic measures. Hypertrophic scars, nonosseous lesions caused by excessive collagen deposition, are often painful, functionally limiting, and aesthetically displeasing. Treatment includes CO2 laser application, steroid injections, and excision with skin grafting. This article reviews the management of these pathologic wounds.


Assuntos
Queimaduras/complicações , Cicatriz Hipertrófica/terapia , Ossificação Heterotópica/terapia , Cicatriz Hipertrófica/etiologia , Humanos , Ossificação Heterotópica/diagnóstico por imagem , Ossificação Heterotópica/etiologia , Radioterapia , Transplante de Pele , Cicatrização
11.
Plast Reconstr Surg ; 140(6): 1091-1100, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28806288

RESUMO

BACKGROUND: Acellular dermal matrix has gained widespread acceptance in immediate expander/implant reconstruction because of perceived benefits, including improved expansion dynamics and superior aesthetic results. Although previous investigators have evaluated its risks, few studies have assessed the impact of acellular dermal matrix on other outcomes, including patient-reported measures. METHODS: The Mastectomy Reconstruction Outcomes Consortium Study used a prospective cohort design to evaluate patients undergoing postmastectomy reconstruction from 10 centers and 58 participating surgeons between 2012 and 2015. The analysis focused on women undergoing immediate tissue expander reconstruction following mastectomies for cancer treatment or prophylaxis. Medical records and patient-reported outcome data, using the BREAST-Q and Numeric Pain Rating Scale instruments, were reviewed. Bivariate analyses and mixed-effects regression models were applied. RESULTS: A total of 1297 patients were evaluated, including 655 (50.5 percent) with acellular dermal matrix and 642 (49.5 percent) without acellular dermal matrix. Controlling for demographic and clinical covariates, no significant differences were seen between acellular dermal matrix and non-acellular dermal matrix cohorts in overall complications (OR, 1.21; p = 0.263), major complications (OR, 1.43; p = 0.052), wound infections (OR, 1.49; p = 0.118), or reconstructive failures (OR, 1.55; p = 0.089) at 2 years after reconstruction. There were also no significant differences between the cohorts in the time to expander/implant exchange (p = 0.78). No significant differences were observed in patient-reported outcome scores, including satisfaction with breasts, psychosocial well-being, sexual well-being, physical well-being, and postoperative pain. CONCLUSIONS: In this multicenter, prospective analysis, the authors found no significant acellular dermal matrix effects on complications, time to exchange, or patient-reported outcome in immediate expander/implant breast reconstruction. Further studies are needed to develop criteria for more selective use of acellular dermal matrix in these patients. CLINICAL QUESTION/LEVEL OF EVIDENCE: Therapeutic, II.


Assuntos
Derme Acelular , Implantes de Mama , Neoplasias da Mama/cirurgia , Mamoplastia/instrumentação , Mastectomia/instrumentação , Dispositivos para Expansão de Tecidos , Implante Mamário/instrumentação , Implante Mamário/métodos , Canadá , Estudos de Coortes , Feminino , Humanos , Mamoplastia/métodos , Mastectomia/métodos , Pessoa de Meia-Idade , Satisfação do Paciente , Complicações Pós-Operatórias/etiologia , Estudos Prospectivos , Fatores de Risco , Expansão de Tecido/instrumentação , Expansão de Tecido/métodos , Resultado do Tratamento , Estados Unidos
12.
Wound Repair Regen ; 25(3): 521-525, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28513105

RESUMO

The bone morphogenic protein signaling (BMP) is intricately involved in the quiescence and regulation of stem cells through activation of BMP receptors. Hair follicle stem cells play a critical role in cutaneous homeostasis and regeneration. Here, we utilize a novel mouse model with targeted overexpression of the BMP receptor ALK2/ACVR1 in hair follicle stem cells, to characterize its role in skin development and postnatal wound healing. Initial histologic evaluation demonstrated significant dysregulation in hair follicle morphogenesis in mutant mice. These demonstrated increased numbers of individual hair follicles with altered morphology and localization. Mutant follicles were found to exhibit elevated proliferative activity as well as increased prevalence of CD34 and ITGA6 positive follicle stem cells. Interestingly, constitutive overexpression of ALK2 resulted in attenuation of cutaneous wound healing. These findings demonstrate that hair follicle specific ALK2 is intricately involved in maintenance of the stem cell niche and wound healing.


Assuntos
Receptores de Ativinas Tipo I/fisiologia , Folículo Piloso/citologia , Regeneração/fisiologia , Cicatrização/fisiologia , Ferimentos e Lesões/terapia , Animais , Diferenciação Celular , Modelos Animais de Doenças , Feminino , Folículo Piloso/crescimento & desenvolvimento , Camundongos , Camundongos Transgênicos , Morfogênese , Transdução de Sinais/fisiologia
13.
Hand Clin ; 33(2): 305-315, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28363297

RESUMO

Burn injury can result in hypertrophic scar formation that can lead to debilitating functional deficits and poor aesthetic outcomes. Although nonoperative modalities in the early phase of scar maturation are critical to minimize hypertrophic scar formation, surgical management is often indicated to restore hand function. The essential tenant of operative scar management is release of tension, which can often be achieved through local tissue rearrangement. Laser therapy has emerged as a central pillar of subsequent scar rehabilitation. These treatment tools provide an effective resource for the reconstructive surgeon to treat hypertrophic hand scars.


Assuntos
Queimaduras/terapia , Cicatriz Hipertrófica/terapia , Traumatismos da Mão/terapia , Queimaduras/complicações , Cicatriz Hipertrófica/etiologia , Traumatismos da Mão/complicações , Humanos , Terapia a Laser , Transplante de Pele
14.
Nat Commun ; 7: 11945, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27324848

RESUMO

Current progenitor cell therapies have only modest efficacy, which has limited their clinical adoption. This may be the result of a cellular heterogeneity that decreases the number of functional progenitors delivered to diseased tissue, and prevents correction of underlying pathologic cell population disruptions. Here, we develop a high-resolution method of identifying phenotypically distinct progenitor cell subpopulations via single-cell transcriptional analysis and advanced bioinformatics. When combined with high-throughput cell surface marker screening, this approach facilitates the rational selection of surface markers for prospective isolation of cell subpopulations with desired transcriptional profiles. We establish the usefulness of this platform in costly and highly morbid diabetic wounds by identifying a subpopulation of progenitor cells that is dysfunctional in the diabetic state, and normalizes diabetic wound healing rates following allogeneic application. We believe this work presents a logical framework for the development of targeted cell therapies that can be customized to any clinical application.


Assuntos
Adipócitos/metabolismo , Diabetes Mellitus/terapia , Análise de Célula Única/métodos , Transplante de Células-Tronco , Células-Tronco/metabolismo , Ferida Cirúrgica/terapia , Abdominoplastia , Adipócitos/citologia , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Biomarcadores/metabolismo , Diferenciação Celular , Linhagem da Célula/genética , Proliferação de Células , Separação Celular , Sobrevivência Celular , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/terapia , Dipeptidil Peptidase 4/genética , Dipeptidil Peptidase 4/metabolismo , Feminino , Expressão Gênica , Humanos , Masculino , Camundongos , Microfluídica , Células-Tronco/citologia , Ferida Cirúrgica/metabolismo , Ferida Cirúrgica/patologia , Cicatrização/fisiologia
15.
Front Neurol ; 7: 41, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27047447

RESUMO

Stem cell therapies can promote neural repair and regeneration, yet controversy regarding optimal cell source and mechanism of action has slowed clinical translation, potentially due to undefined cellular heterogeneity. Single-cell resolution is needed to identify clinically relevant subpopulations with the highest therapeutic relevance. We combine single-cell microfluidic analysis with advanced computational modeling to study for the first time two common sources for cell-based therapies, human NSCs and MSCs. This methodology has the potential to logically inform cell source decisions for any clinical application.

16.
Stem Cells ; 34(6): 1692-701, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27068890

RESUMO

Heterotopic ossification (HO), the formation of extra-skeletal bone in soft tissues, is a pathologic process occurring after substantial burns or trauma, or in patients with type I bone morphogenetic protein (BMP) receptor hyperactivating mutations. Identifying the cells responsible for de novo bone formation during adulthood is of critical importance for therapeutic and regenerative purposes. Using a model of trauma-induced HO with hind limb Achilles' tenotomy and dorsal burn injury and a genetic nontrauma HO model (Nfatc1-Cre/caAcvr1(fl/wt) ), we demonstrate enrichment of previously defined bone-cartilage-stromal progenitor cells (BCSP: AlphaV+/CD105+/Tie2-/CD45-/Thy1-/6C3-) at the site of HO formation when compared with marrow isolated from the ipsilateral hind limb, or from tissue of the contralateral, uninjured hind limb. Upon transplantation into tenotomy sites soon after injury, BCSPs isolated from neonatal mice or developing HO incorporate into the developing lesion in cartilage and bone and express chondrogenic and osteogenic transcription factors. Additionally, BCSPs isolated from developing HO similarly incorporate into new HO lesions upon transplantation. Finally, adventitial cells, but not pericytes, appear to play a supportive role in HO formation. Our findings indicate that BCSPs contribute to de novo bone formation during adulthood and may hold substantial regenerative potential. Stem Cells 2016;34:1692-1701.


Assuntos
Osso e Ossos/citologia , Cartilagem/citologia , Modelos Genéticos , Ossificação Heterotópica/etiologia , Ossificação Heterotópica/genética , Transplante de Células-Tronco , Células-Tronco/citologia , Ferimentos e Lesões/complicações , Tendão do Calcâneo/patologia , Tendão do Calcâneo/cirurgia , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Humanos , Masculino , Camundongos Endogâmicos C57BL , Ossificação Heterotópica/patologia , Ossificação Heterotópica/terapia , Osteoblastos/patologia , Osteogênese , Pericitos/patologia , Células Estromais/citologia , Tenotomia , Ferimentos e Lesões/patologia
17.
Ann Surg ; 264(6): 1174-1180, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26779981

RESUMO

OBJECTIVE: The objective of this study was to determine the contribution of lymphatic tissue to heterotopic ossification (HO). BACKGROUND: HO is the pathologic development of ectopic bone within soft tissues often following severe trauma. Characterization of the tissue niche supporting HO is critical to identifying therapies directed against this condition. Lymphangiogenesis is upregulated during incidents of trauma, thereby coincident with the niche supportive of HO. We hypothesized that lymphatic tissues play a critical role in HO formation. METHODS: Mice underwent hindlimb Achilles' tendon transection and dorsal burn injury (burn/tenotomy) to induce HO. The popliteal and inguinal lymph nodes were excised ipsilateral to the tenotomy site. Flow cytometry and immunostaining were used to quantify and localize lymphoendothelium. MicroCT was used to quantify HO. RESULTS: Enrichment of mature lymphatic tissues was noted 2 weeks after injury at the tendon transection sites when compared with the contralateral, intact tendon based on LYVE1+ tubules (10.9% vs 0.8%, P < 0.05). Excision of the inguinal and popliteal nodes with draining popliteal lymphatic vessel significantly decreased the presence of mature lymphoendothelium 2 weeks after injury (10.9% vs 3.3%, P < 0.05). Bone-cartilage-stromal progenitor cells (CD105+/AlphaV+/Tie2-/CD45-/CD90-/BP1-) were also significantly decreased after lymph node excision (10.2% vs 0.5%, P < 0.05). A significant decrease was noted in the volume of de novo HO present within the soft tissues (0.12 mm vs 0.02 mm). CONCLUSION: These findings suggest that lymphatic vessels are intimately linked with the de novo formation bone within soft tissues following trauma, and their presence may facilitate bone formation.


Assuntos
Tendão do Calcâneo/lesões , Queimaduras/complicações , Linfangiogênese , Ossificação Heterotópica/patologia , Animais , Modelos Animais de Doenças , Citometria de Fluxo , Excisão de Linfonodo , Camundongos , Ossificação Heterotópica/diagnóstico por imagem , Microtomografia por Raio-X
18.
Tissue Eng Part A ; 22(3-4): 214-21, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26585335

RESUMO

BACKGROUND: Reconstruction of soft tissue defects has traditionally relied on the use of grafts and flaps, which may be associated with variable resorption and/or significant donor site morbidity. Cell-based strategies employing adipose-derived stromal cells (ASCs), found within the stromal vascular fraction (SVF) of adipose tissue, may offer an alternative strategy for soft tissue reconstruction. In this study, we investigated the potential of a bone morphogenetic protein receptor type 1A (BMPR1A)(+) subpopulation of ASCs to enhance de novo adipogenesis. METHODS: Human lipoaspirate was enzymatically digested to isolate SVF and magnetic-activated cell separation was utilized to obtain BMPR1A(+) and BMPR1A(-) cells. These cells, along with unenriched cells, were expanded in culture and evaluated for adipogenic gene expression and in vitro adipocyte formation. Cells from each group were also labeled with a green fluorescent protein (GFP) lentivirus and transplanted into the inguinal fat pads, an adipogenic niche, of immunocompromised mice to determine their potential for de novo adipogenesis. Confocal microscopy along with staining of lipid droplets and vasculature was performed to evaluate the formation of mature adipocytes by transplanted cells. RESULTS: In comparison to BMPR1A(-) and unenriched ASCs, BMPR1A(+) cells demonstrated significantly enhanced adipogenesis when cultured in an adipogenic differentiation medium, as evidenced by increased staining with Oil Red O and increased expression of peroxisome proliferator-activating receptor gamma (PPAR-γ) and fatty acid-binding protein 4 (FABP4). BMPR1A(+) cells also formed significantly more adipocytes in vivo, as demonstrated by quantification of GFP+ adipocytes. Minimal formation of mature adipocytes was appreciated by BMPR1A(-) cells. CONCLUSIONS: BMPR1A(+) ASCs show an enhanced ability for adipogenesis in vitro, as shown by gene expression and histological staining. Furthermore, within an adipogenic niche, BMPR1A(+) cells possessed an increased capacity to generate de novo fat compared to BMPR1A(-) and unenriched cells. This suggests utility for the BMPR1A(+) subpopulation in cell-based strategies for soft tissue reconstruction.


Assuntos
Adipócitos/metabolismo , Adipogenia , Tecido Adiposo/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/biossíntese , Adipócitos/citologia , Tecido Adiposo/citologia , Adulto , Animais , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Células Cultivadas , Feminino , Humanos , Lentivirus , Camundongos , Pessoa de Meia-Idade , Células Estromais/citologia , Células Estromais/metabolismo , Transdução Genética
19.
Plast Reconstr Surg ; 136(5): 1004-1013, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26505703

RESUMO

BACKGROUND: Diabetes and aging are known risk factors for impaired neovascularization in response to ischemic insult, resulting in chronic wounds, and poor outcomes following myocardial infarction and cerebrovascular injury. Hypoxia-inducible factor (HIF)-1α, has been identified as a critical regulator of the response to ischemic injury and is dysfunctional in diabetic and elderly patients. To better understand the role of this master hypoxia regulator within cutaneous tissue, the authors generated and evaluated a fibroblast-specific HIF-1α knockout mouse model. METHODS: The authors generated floxed HIF-1 mice (HIF-1) by introducing loxP sites around exon 1 of the HIF-1 allele in C57BL/6J mice. Fibroblast-restricted HIF-1α knockout (FbKO) mice were generated by breeding our HIF-1 with tamoxifen-inducible Col1a2-Cre mice (Col1a2-CreER). HIF-1α knockout was evaluated on a DNA, RNA, and protein level. Knockout and wild-type mice were subjected to ischemic flap and wound healing models, and CD31 immunohistochemistry was performed to assess vascularity of healed wounds. RESULTS: Quantitative real-time polymerase chain reaction of FbKO skin demonstrated significantly reduced Hif1 and Vegfa expression compared with wild-type. This finding was confirmed at the protein level (p < 0.05). HIF-1α knockout mice showed significantly impaired revascularization of ischemic tissue and wound closure and vascularity (p < 0.05). CONCLUSIONS: Loss of HIF-1α from fibroblasts results in delayed wound healing, reduced wound vascularity, and significant impairment in the ischemic neovascular response. These findings provide new insight into the importance of cell-specific responses to hypoxia during cutaneous neovascularization.


Assuntos
Deleção de Genes , Regulação da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neovascularização Patológica/genética , Cicatrização/genética , Animais , Células Cultivadas , Modelos Animais de Doenças , Fibroblastos/citologia , Fibroblastos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Distribuição Aleatória , Reação em Cadeia da Polimerase em Tempo Real , Sensibilidade e Especificidade , Cicatrização/fisiologia
20.
Hand (N Y) ; 10(2): 342-5, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26034457

RESUMO

Deep tissue fungal infections of the hand are exceedingly uncommon. We present a case of fungal tenosynovitis caused by Phialophora verrucosa that led to extensor tendon rupture in a patient who was on chronic immunosuppressive therapy. Indolent fungal cysts can elude clinical diagnosis until excision is performed with definitive pathologic examination. In immunocompromised patients, antifungal therapy may be warranted after cyst excision even in the absence of acute infection to prevent subsequent progression to tenosynovitis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...