Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(17): 22166-22176, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38648115

RESUMO

We propose an atomically resolved approach to capture the spatial variations of the Schottky barrier height (SBH) at metal-semiconductor heterojunctions. This proposed scheme, based on atom-specific partial density of states (PDOS) calculations, further enables calculation of the effective SBH that aligns with conductance measurements. We apply this approach to study the variations of SBH at MoS2@Au heterojunctions, in which MoS2 contains conducting and semiconducting grain boundaries (GBs). Our results reveal that there are significant variations in SBH at atoms in the defected heterojunctions. Of particular interest is the fact that the SBH in some areas with extended defects approaches zero, indicating Ohmic contact. One important implication of this finding is that the effective SBH should be intrinsically dependent on the defect density and character. Remarkably, the obtained effective SBH values demonstrate good agreement with existing experimental measurements. Thus, the present study addresses two long-standing challenges associated with SBH in MoS2-metal heterojunctions: the wide variation in experimentally measured SBH values at MoS2@metal heterojunctions and the large discrepancy between density-functional-theory-predicted and experimentally measured SBH values. Our proposed approach points out a valuable pathway for understanding and manipulating SBHs at metal-semiconductor heterojunctions.

2.
Sci Rep ; 13(1): 22549, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110508

RESUMO

Recently, the design of lightweight high entropy alloys (HEAs) with a mass density lower than 5 g/cm3 has attracted much research interest in structural materials. We applied a first principles-based high-throughput method to design lightweight HEAs in single solid-solution phase. Three lightweight quinary HEA families were studied: AlBeMgTiLi, AlBeMgTiSi and AlBeMgTiCu. By comprehensively exploring their entire compositional spaces, we identified the most promising compositions according to the following design criteria: the highest stability, lowest mass density, largest elastic modulus and specific stiffness, along with highest Pugh's ratio. We found that HEAs with the topmost compositions exhibit a negative formation energy, a low density and high specific Young's modulus, but a low Pugh's ratio. Importantly, we show that the most stable composition, Al0.31Be0.15Mg0.14Ti0.05Si0.35 is energetically more stable than its metallic compounds and it significantly outperforms the current lightweight engineering alloys such as the 7075 Al alloy. These results suggest that the designed lightweight HEAs can be energetically more stable, lighter, and stiffer but slightly less ductile compared to existing Al alloys. Similar conclusions can be also drawn for the AlBeMgTiLi and AlBeMgTiCu. Our design methodology and findings serve as a valuable tool and guidance for the experimental development of lightweight HEAs.

4.
Sci Rep ; 12(1): 18001, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289283

RESUMO

Using DFT calculations, we investigate the effects of the type, location, and density of point defects in monolayer MoS2 on electronic structures and Schottky barrier heights (SBH) of Au/MoS2 heterojunction. Three types of point defects in monolayer MoS2, that is, S monovacancy, S divacancy and MoS (Mo substitution at S site) antisite defects, are considered. The following findings are revealed: (1) The SBH for the monolayer MoS2 with these defects is universally higher than that for its defect-free counterpart. (2) S divacancy and MoS antisite defects increase the SBH to a larger extent than S monovacancy. (3) A defect located in the inner sublayer of MoS2, which is adjacent to Au substrate, increases the SBH to a larger extent than that in the outer sublayer of MoS2. (4) An increase in defect density increases the SBH. These findings indicate a large variation of SBH with the defect type, location, and concentration. We also compare our results with previously experimentally measured SBH for Au/MoS2 contact and postulate possible reasons for the large differences among existing experimental measurements and between experimental measurements and theoretical predictions. The findings and insights revealed here may provide practical guidelines for modulation and optimization of SBH in Au/MoS2 and similar heterojunctions via defect engineering.

5.
J Phys Condens Matter ; 32(15): 155401, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-31846953

RESUMO

Various graphene morphologies (compact hexagonal, dendritic, and circular domains) have been observed during chemical vapor deposition (CVD) growth on Cu substrate. The existing all-atom kinetic Monte Carlo (kMC) models, however, are unable to reproduce all these graphene morphologies, suggesting that some crucial atomistic events that dictate the morphology are missing. In this work, we propose an all-atom kMC model to simulate the graphene CVD growth on Cu substrate. Besides the usual atomistic events, such as the deposition and diffusion of carbon species on the substrate, and their attachments to the edge, we further include three other important events, that is, the edge attachment of carbon species to form a kink, the diffusion of carbon species along the edge, and the rotation of dimers to form kinks. All the energetic parameters of these events are obtained from first-principles calculations. With this new model, we successfully predict the growth of various graphene morphologies, which are consistent with the morphology phase diagram. In addition to confirming that carbon dimers are the dominant feeding species, we also find that the dominance level depends on the growth flux and temperature. Therefore, the proposed model is able to capture the growth kinetics, providing a useful tool for controlled synthesis of graphene with desired morphologies.

6.
ACS Appl Mater Interfaces ; 8(13): 8765-72, 2016 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-27004415

RESUMO

Recent studies have shown that interface chemistry, that is, the formation and breaking of chemical bonds across contacting interfaces, is closely related to the wear and friction behavior at the nanoscale. In reality, the dangling bond density (DBD) at contacting surfaces can vary greatly. Currently, it remains unclear how friction and wear mechanisms depend on DBDs and whether the Archard's law for wear and Amonton's law for friction are still applicable for contacting surfaces with different DBDs. In this work, we address these issues by studying the wear and friction behavior between two sliding diamond-like carbon surfaces by controlling DBDs via hydrogenation using molecular dynamics simulations. It is found that the chemical bond breaking and remaking across the contacting interface play the key role in determining the friction and wear behavior. During the sliding, a higher DBD leads to more chemical bond formations across the interface, causing stronger wear via either atom or cluster detachments. With the same DBD, a mechanism transition from an atom-by-atom to cluster detachments is observed by increasing the normal load. Remarkably, a fully saturated surface can exhibit a wearless friction. We further show that after necessary modifications, the Archard's law for wear and the Amonton's law for friction may be applicable at the nanoscale. The present work reveals insights into the effect of interface chemistry on the friction and wear, and it provides guidelines for effective antiwear design.

7.
Nanoscale Res Lett ; 7(1): 148, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22353343

RESUMO

Surface diffusion of mobile adsorbates is not only the key to control the rate of dynamical processes on solid surfaces, e.g. epitaxial growth, but also of fundamental importance for recent technological applications, such as nanoscale electro-mechanical, tribological, and surface probing devices. Though several possible regimes of surface diffusion have been suggested, the nanoscale surface Brownian motion, especially in the technologically important low friction regimes, remains largely unexplored. Using molecular dynamics simulations, we show for the first time, that a C60 admolecule on a graphene substrate exhibits two distinct regimes of nanoscale Brownian motion: a quasi-continuous and a ballistic-like. A crossover between these two regimes is realized by changing the temperature of the system. We reveal that the underlying physical origin for this crossover is a mechanism transition of kinetic nanofriction arising from distinctive ways of interaction between the admolecule and the graphene substrate in these two regimes due to the temperature change. Our findings provide insight into surface mass transport and kinetic friction control at the nanoscale.

8.
J Mol Model ; 17(11): 2825-30, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21287214

RESUMO

We perform atomistic simulations to study the failure behavior of graphene-based pressure sensor, which is made of a graphene nanoflake suspended over a well in a silicon-carbide substrate and clamped on its surrounding edge by the covalent bonds between the graphene flake and the substrate. Two distinct types of mechanical failure are identified: the first one is characterized by complete detachment of the graphene nanoflake from the silicon-carbide substrate via breaking the covalent bonds between the carbon atoms of the graphene flake and the silicon atoms of the substrate; the second type is characterized by the rupture of the graphene nanoflake via breaking the carbon-carbon bonds within the graphene. The type of mechanical failure is determined by the clamped area between the graphene flake and the substrate. The failure pressure can be tuned by changing the clamped area and the well radius. A model is proposed to explain the transition between the two types of failure mode. The present work provides a quantitative framework for the design of graphene-based pressure sensors.


Assuntos
Grafite/química , Nanoestruturas/química , Compostos Inorgânicos de Carbono/química , Teste de Materiais , Conformação Molecular , Nanotecnologia , Pressão , Compostos de Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA