Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pathol Inform ; 12: 26, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34447606

RESUMO

BACKGROUND: Cervical intraepithelial neoplasia (CIN) is regarded as a potential precancerous state of the uterine cervix. Timely and appropriate early treatment of CIN can help reduce cervical cancer mortality. Accurate estimation of CIN grade correlated with human papillomavirus type, which is the primary cause of the disease, helps determine the patient's risk for developing the disease. Colposcopy is used to select women for biopsy. Expert pathologists examine the biopsied cervical epithelial tissue under a microscope. The examination can take a long time and is prone to error and often results in high inter-and intra-observer variability in outcomes. METHODOLOGY: We propose a novel image analysis toolbox that can automate CIN diagnosis using whole slide image (digitized biopsies) of cervical tissue samples. The toolbox is built as a four-step deep learning model that detects the epithelium regions, segments the detected epithelial portions, analyzes local vertical segment regions, and finally classifies each epithelium block with localized attention. We propose an epithelium detection network in this study and make use of our earlier research on epithelium segmentation and CIN classification to complete the design of the end-to-end CIN diagnosis toolbox. RESULTS: The results show that automated epithelium detection and segmentation for CIN classification yields comparable results to manually segmented epithelium CIN classification. CONCLUSION: This highlights the potential as a tool for automated digitized histology slide image analysis to assist expert pathologists.

2.
PLoS One ; 15(11): e0242301, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33180877

RESUMO

Data-driven deep learning (DL) methods using convolutional neural networks (CNNs) demonstrate promising performance in natural image computer vision tasks. However, their use in medical computer vision tasks faces several limitations, viz., (i) adapting to visual characteristics that are unlike natural images; (ii) modeling random noise during training due to stochastic optimization and backpropagation-based learning strategy; (iii) challenges in explaining DL black-box behavior to support clinical decision-making; and (iv) inter-reader variability in the ground truth (GT) annotations affecting learning and evaluation. This study proposes a systematic approach to address these limitations through application to the pandemic-caused need for Coronavirus disease 2019 (COVID-19) detection using chest X-rays (CXRs). Specifically, our contribution highlights significant benefits obtained through (i) pretraining specific to CXRs in transferring and fine-tuning the learned knowledge toward improving COVID-19 detection performance; (ii) using ensembles of the fine-tuned models to further improve performance over individual constituent models; (iii) performing statistical analyses at various learning stages for validating results; (iv) interpreting learned individual and ensemble model behavior through class-selective relevance mapping (CRM)-based region of interest (ROI) localization; and, (v) analyzing inter-reader variability and ensemble localization performance using Simultaneous Truth and Performance Level Estimation (STAPLE) methods. We find that ensemble approaches markedly improved classification and localization performance, and that inter-reader variability and performance level assessment helps guide algorithm design and parameter optimization. To the best of our knowledge, this is the first study to construct ensembles, perform ensemble-based disease ROI localization, and analyze inter-reader variability and algorithm performance for COVID-19 detection in CXRs.


Assuntos
Infecções por Coronavirus/diagnóstico por imagem , Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Variações Dependentes do Observador , Pneumonia Viral/diagnóstico por imagem , Radiografia Torácica/normas , Algoritmos , Betacoronavirus , COVID-19 , Humanos , Redes Neurais de Computação , Pandemias , SARS-CoV-2
3.
J Pathol Inform ; 11: 10, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32477616

RESUMO

BACKGROUND: Automated pathology techniques for detecting cervical cancer at the premalignant stage have advantages for women in areas with limited medical resources. METHODS: This article presents EpithNet, a deep learning approach for the critical step of automated epithelium segmentation in digitized cervical histology images. EpithNet employs three regression networks of varying dimensions of image input blocks (patches) surrounding a given pixel, with all blocks at a fixed resolution, using varying network depth. RESULTS: The proposed model was evaluated on 311 digitized histology epithelial images and the results indicate that the technique maximizes region-based information to improve pixel-wise probability estimates. EpithNet-mc model, formed by intermediate concatenation of the convolutional layers of the three models, was observed to achieve 94% Jaccard index (intersection over union) which is 26.4% higher than the benchmark model. CONCLUSIONS: EpithNet yields better epithelial segmentation results than state-of-the-art benchmark methods.

4.
J Pathol Inform ; 11: 40, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33828898

RESUMO

BACKGROUND: Cervical cancer is one of the deadliest cancers affecting women globally. Cervical intraepithelial neoplasia (CIN) assessment using histopathological examination of cervical biopsy slides is subject to interobserver variability. Automated processing of digitized histopathology slides has the potential for more accurate classification for CIN grades from normal to increasing grades of pre-malignancy: CIN1, CIN2, and CIN3. METHODOLOGY: Cervix disease is generally understood to progress from the bottom (basement membrane) to the top of the epithelium. To model this relationship of disease severity to spatial distribution of abnormalities, we propose a network pipeline, DeepCIN, to analyze high-resolution epithelium images (manually extracted from whole-slide images) hierarchically by focusing on localized vertical regions and fusing this local information for determining Normal/CIN classification. The pipeline contains two classifier networks: (1) a cross-sectional, vertical segment-level sequence generator is trained using weak supervision to generate feature sequences from the vertical segments to preserve the bottom-to-top feature relationships in the epithelium image data and (2) an attention-based fusion network image-level classifier predicting the final CIN grade by merging vertical segment sequences. RESULTS: The model produces the CIN classification results and also determines the vertical segment contributions to CIN grade prediction. CONCLUSION: Experiments show that DeepCIN achieves pathologist-level CIN classification accuracy.

5.
AMIA Annu Symp Proc ; 2019: 820-827, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32308878

RESUMO

Liquid-based cytology (LBC) is a reliable automated technique for the screening of Papanicolaou (Pap) smear data. It is an effective technique for collecting a majority of the cervical cells and aiding cytopathologists in locating abnormal cells. Most methods published in the research literature rely on accurate cell segmentation as a prior, which remains challenging due to a variety of factors, e.g., stain consistency, presence of clustered cells, etc. We propose a method for automatic classification of cervical slide images through generation of labeled cervical patch data and extracting deep hierarchical features by fine-tuning convolution neural networks, as well as a novel graph-based cell detection approach for cellular level evaluation. The results show that the proposed pipeline can classify images of both single cell and overlapping cells. The VGG-19 model is found to be the best at classifying the cervical cytology patch data with 95 % accuracy under precision-recall curve.


Assuntos
Aprendizado Profundo , Teste de Papanicolaou , Neoplasias do Colo do Útero/patologia , Esfregaço Vaginal/métodos , Colo do Útero/citologia , Conjuntos de Dados como Assunto , Feminino , Humanos , Redes Neurais de Computação , Curva ROC
6.
J Pathol Inform ; 9: 5, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29619277

RESUMO

BACKGROUND: Advances in image analysis and computational techniques have facilitated automatic detection of critical features in histopathology images. Detection of nuclei is critical for squamous epithelium cervical intraepithelial neoplasia (CIN) classification into normal, CIN1, CIN2, and CIN3 grades. METHODS: In this study, a deep learning (DL)-based nuclei segmentation approach is investigated based on gathering localized information through the generation of superpixels using a simple linear iterative clustering algorithm and training with a convolutional neural network. RESULTS: The proposed approach was evaluated on a dataset of 133 digitized histology images and achieved an overall nuclei detection (object-based) accuracy of 95.97%, with demonstrated improvement over imaging-based and clustering-based benchmark techniques. CONCLUSIONS: The proposed DL-based nuclei segmentation Method with superpixel analysis has shown improved segmentation results in comparison to state-of-the-art methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...