Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microfluid Nanofluidics ; 16(6): 1117-1129, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25328508

RESUMO

Microfluidic discs have been employed in a variety of applications for chemical analyses and biological diagnostics. These platforms offer a sophisticated fluidic toolbox, necessary to perform processes that involve sample preparation, purification, analysis, and detection. However, one of the weaknesses of such systems is the uni-directional movement of fluid from the disc center to its periphery due to the uni-directionality of the propelling centrifugal force. Here we demonstrate a mechanism for fluid movement from the periphery of a hydrophobic disc toward its center that does not rely on the energy supplied by any peripheral equipment. This method utilizes a ventless fluidic network that connects a column of working fluid to a sample fluid. As the working fluid is pushed by the centrifugal force to move toward the periphery of the disc, the sample fluid is pulled up toward the center of the disc analogous to a physical pulley where two weights are connected by a rope passed through a block. The ventless network is analogous to the rope in the pulley. As the working fluid descends, it creates a negative pressure that pulls the sample fluid up. The sample and working fluids do not come into direct contact and it allows the freedom to select a working fluid with physical properties markedly different from those of the sample. This article provides a demonstration of the "micro-pulley" on a disc, discusses underlying physical phenomena, provides design guidelines for fabrication of micro-pulleys on discs, and outlines a vision for future micro-pulley applications.

2.
Med Biol Eng Comput ; 51(5): 525-35, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23292292

RESUMO

This paper presents a theoretical development and critical analysis of the burst frequency equations for capillary valves on a microfluidic compact disc (CD) platform. This analysis includes background on passive capillary valves and the governing models/equations that have been developed to date. The implicit assumptions and limitations of these models are discussed. The fluid meniscus dynamics before bursting is broken up into a multi-stage model and a more accurate version of the burst frequency equation for the capillary valves is proposed. The modified equations are used to evaluate the effects of various CD design parameters such as the hydraulic diameter, the height to width aspect ratio, and the opening wedge angle of the channel on the burst pressure.


Assuntos
Microfluídica/instrumentação , Modelos Teóricos , Algoritmos , Centrifugação/instrumentação , Discos Compactos , Desenho de Equipamento , Hidrodinâmica , Miniaturização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...