Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38746134

RESUMO

Extracellular vesicles (EVs) serve as crucial mediators of cell-to-cell communication in normal physiology as well as in diseased states, and have been largely studied in regard to their role in cancer progression. However, the mechanisms by which their biogenesis and secretion are regulated by metabolic or endocrine factors remain unknown. Here, we delineate a mechanism by which EV secretion is regulated by a cholesterol metabolite, 27-Hydroxycholesterol (27HC), where treatment of myeloid immune cells (RAW 264.7 and J774A.1) with 27HC impairs lysosomal homeostasis, leading to shunting of multivesicular bodies (MVBs) away from lysosomal degradation, towards secretion as EVs. This impairment of lysosomal function is caused by mitochondrial dysfunction and subsequent increase in reactive oxygen species (ROS). Interestingly, cotreatment with a mitochondria-targeted antioxidant rescued the lysosomal impairment and attenuated the 27HC-mediated increase in EV secretion. Overall, our findings establish how a cholesterol metabolite regulates EV secretion and paves the way for the development of strategies to regulate cancer progression by controlling EV secretion.

2.
Opt Lett ; 49(9): 2513-2516, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691757

RESUMO

Hyperspectral coherent Raman scattering microscopy provides a significant improvement in acquisition time compared to spontaneous Raman scattering yet still suffers from the time required to sweep through individual wavenumbers. To address this, we present the use of a pulse shaper with a 2D spatial light modulator for phase- and amplitude-based shaping of the Stokes beam to create programmable spectrally tailored excitation envelopes. This enables collection of useful spectral information in a more rapid and efficient manner.

3.
Biomed Opt Express ; 15(4): 2048-2062, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38633095

RESUMO

The dynamic range and fluctuations of fluorescence intensities and lifetimes in biological samples are large, demanding fast, precise, and versatile techniques. Among the high-speed fluorescence lifetime imaging microscopy (FLIM) techniques, directly sampling the output of analog single-photon detectors at GHz rates combined with computational photon counting can handle a larger range of photon rates. Traditionally, the laser clock is not sampled explicitly in fast FLIM; rather the detection is synchronized to the laser clock so that the excitation pulse train can be inferred from the cumulative photon statistics of several pixels. This has two disadvantages for sparse or weakly fluorescent samples: inconsistencies in inferring the laser clock within a frame and inaccuracies in aligning the decay curves from different frames for averaging. The data throughput is also very inefficient in systems with repetition rates much larger than the fluorescence lifetime due to significant silent regions where no photons are expected. We present a method for registering the photon arrival times to the excitation using time-domain multiplexing for fast FLIM. The laser clock is multiplexed with photocurrents into the silent region. Our technique does not add to the existing data bottleneck, has the sub-nanosecond dead time of computational photon counting based fast FLIM, works with various detectors, lasers, and electronics, and eliminates the errors in lifetime estimation in photon-starved conditions. We demonstrate this concept on two multiphoton setups of different laser repetition rates for single and multichannel FLIM multiplexed into a single digitizer channel for real-time imaging of biological samples.

4.
Opt Express ; 32(7): 11474-11490, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38570994

RESUMO

Coherent anti-Stokes Raman scattering (CARS) microscopy offers label-free chemical contrasts based on molecular vibrations. Hyperspectral CARS (HS-CARS) microscopy enables comprehensive microscale chemical characterization of biological samples. Various HS-CARS methods have been developed with individual advantages and disadvantages. We present what we believe to be a new temporally optimized and spectrally shaped (TOSS) HS-CARS method to overcome the limitations of existing techniques by providing precise control of the spatial and temporal profiles of the excitation beams for efficient and accurate measurements. This method uniquely uses Fourier transform pulse shaping based on a two-dimensional spatial light modulator to control the phase and amplitude of the excitation beams. TOSS-HS-CARS achieves fast, stable, and flexible acquisition, minimizes photodamage, and is highly adaptable to a multimodal multiphoton imaging system.

5.
Sci Rep ; 14(1): 5528, 2024 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448508

RESUMO

Extracellular vesicles (EVs) have been implicated in metastasis and proposed as cancer biomarkers. However, heterogeneity and small size makes assessments of EVs challenging. Often, EVs are isolated from biofluids, losing spatial and temporal context and thus lacking the ability to access EVs in situ in their native microenvironment. This work examines the capabilities of label-free nonlinear optical microscopy to extract biochemical optical metrics of EVs in ex vivo tissue and EVs isolated from biofluids in cases of human breast cancer, comparing these metrics within and between EV sources. Before surgery, fresh urine and blood serum samples were obtained from human participants scheduled for breast tumor surgery (24 malignant, 6 benign) or healthy participants scheduled for breast reduction surgery (4 control). EVs were directly imaged both in intact ex vivo tissue that was removed during surgery and in samples isolated from biofluids by differential ultracentrifugation. Isolated EVs and freshly excised ex vivo breast tissue samples were imaged with custom nonlinear optical microscopes to extract single-EV optical metabolic signatures of NAD(P)H and FAD autofluorescence. Optical metrics were significantly altered in cases of malignant breast cancer in biofluid-derived EVs and intact tissue EVs compared to control samples. Specifically, urinary isolated EVs showed elevated NAD(P)H fluorescence lifetime in cases of malignant cancer, serum-derived isolated EVs showed decreased optical redox ratio in stage II cancer, but not earlier stages, and ex vivo breast tissue showed an elevated number of EVs in cases of malignant cancer. Results further indicated significant differences in the measured optical metabolic signature based on EV source (urine, serum and tissue) within individuals.


Assuntos
Neoplasias Encefálicas , Neoplasias da Mama , Vesículas Extracelulares , Humanos , Feminino , NAD , Biópsia , Mama , Microambiente Tumoral
6.
bioRxiv ; 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37873348

RESUMO

Sample health is critical for live-cell fluorescence microscopy and has promoted light-sheet microscopy that restricts its ultraviolet-visible excitation to one plane inside a three-dimensional sample. It is thus intriguing that laser-scanning nonlinear optical microscopy, which similarly restricts its near-infrared excitation, has not broadly enabled gentle label-free molecular imaging. We hypothesize that intense near-infrared excitation induces phototoxicity via linear absorption of intrinsic biomolecules with subsequent triplet buildup, rather than the commonly assumed mechanism of nonlinear absorption. Using a reproducible phototoxicity assay based on the time-lapse elevation of auto-fluorescence (hyper-fluorescence) from a homogeneous tissue model (chicken breast), we provide strong evidence supporting this hypothesis. Our study justifies a simple imaging technique, e.g., rapidly scanned sub-80-fs excitation with full triplet-relaxation, to mitigate this ubiquitous linear-absorption-mediated phototoxicity independent of sample types. The corresponding label-free imaging can track freely moving C. elegans in real-time at an irradiance up to one-half of water optical breakdown.

7.
Commun Biol ; 6(1): 980, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37749184

RESUMO

Pancreatic cancer is a devastating disease often detected at later stages, necessitating swift and effective chemotherapy treatment. However, chemoresistance is common and its mechanisms are poorly understood. Here, label-free multi-modal nonlinear optical microscopy was applied to study microstructural and functional features of pancreatic tumors in vivo to monitor inter- and intra-tumor heterogeneity and treatment response. Patient-derived xenografts with human pancreatic ductal adenocarcinoma were implanted into mice and characterized over five weeks of intraperitoneal chemotherapy (FIRINOX or Gem/NabP) with known responsiveness/resistance. Resistant and responsive tumors exhibited a similar initial metabolic response, but by week 5 the resistant tumor deviated significantly from the responsive tumor, indicating that a representative response may take up to five weeks to appear. This biphasic metabolic response in a chemoresistant tumor reveals the possibility of intra-tumor spatiotemporal heterogeneity of drug responsiveness. These results, though limited by small sample size, suggest the possibility for further work characterizing chemoresistance mechanisms using nonlinear optical microscopy.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Animais , Camundongos , Xenoenxertos , Neoplasias Pancreáticas/tratamento farmacológico , Carcinoma Ductal Pancreático/tratamento farmacológico , Modelos Animais de Doenças
8.
ACS Photonics ; 9(8): 2748-2755, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35996369

RESUMO

Time-resolved photon counting methods have a finite bandwidth that restricts the acquisition speed of techniques like fluorescence lifetime imaging microscopy (FLIM). To enable faster imaging, computational methods can be employed to count photons when the output of a detector is directly digitized at a high sampling rate. Here, we present computational photon counting using a hybrid photodetector in conjunction with multithreshold peak detection to count instances where one or more photons arrive at the detector within the detector response time. This method can be used to distinguish up to five photon counts per digitized point, whereas previous demonstrations of computational photon counting on data acquired with photomultiplier tubes have only counted one photon at a time. We demonstrate in both freely moving C. elegans and a human breast cancer cell line undergoing apoptosis that this novel multithreshold peak detection method can accurately characterize the intensity and fluorescence lifetime of samples producing photon rates up to 223%, higher than previously demonstrated photon counting FLIM systems.

9.
Am J Cancer Res ; 12(5): 2068-2083, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693090

RESUMO

Extracellular vesicles (EVs) have been studied for their potential applications in cancer screening, diagnosis, and treatment monitoring. Most studies have focused on the bulk content of EVs; however, it is also informative to investigate their metabolic status, and changes under different physiological and environmental conditions. In this study, noninvasive, multimodal, label-free nonlinear optical microscopy was used to evaluate the optical redox ratio of large EVs (microvesicles) isolated from the urine of 11 dogs in three cohorts (4 healthy, 4 transitional cell carcinoma (TCC) of the bladder, and 3 prostate cancer). The optical redox ratio is a common metric comparing the autofluorescence intensities of metabolic cofactors FAD and NAD(P)H to characterize the metabolic profile of cells and tissues, and has recently been applied to EVs. The optical redox ratio revealed that dogs with TCC of the bladder had a more than 2-fold increase in NAD(P)H-rich urinary EVs (uEVs) when compared to healthy dogs, whereas dogs with prostate cancer had no significant difference. The optical redox ratio values of uEVs kept at -20°C for 48 hours were significantly different from those of freshly isolated uEVs, indicating that this parameter is more reliable when assessing freshly isolated uEVs. These results suggest that the label-free optical redox ratio of uEVs, indicating relative rates of glycolysis and oxidative phosphorylation of parent cells and tissues, may act as a potential screening biomarker for bladder cancer.

10.
J Biomed Opt ; 27(5)2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35643823

RESUMO

SIGNIFICANCE: Needle biopsy (NB) procedures are important for the initial diagnosis of many types of cancer. However, the possibility of NB specimens being unable to provide diagnostic information, (i.e., non-diagnostic sampling) and the time-consuming histological evaluation process can cause delays in diagnoses that affect patient care. AIM: We aim to demonstrate the advantages of this label-free multimodal nonlinear optical imaging (NLOI) technique as a non-destructive point-of-procedure evaluation method for NB tissue cores, for the visualization and characterization of the tissue microenvironment. APPROACH: A portable, label-free, multimodal NLOI system combined second-harmonic generation (SHG) and third-harmonic generation and two- and three-photon autofluorescence (2PF, 3PF) microscopy. It was used for intraoperative imaging of fresh NB tissue cores acquired during canine cancer surgeries, which involved liver, lung, and mammary tumors as well as soft-tissue sarcoma; in total, eight canine patients were recruited. An added tissue culture chamber enabled the use of this NLOI system for longitudinal imaging of fresh NB tissue cores taken from an induced rat mammary tumor and healthy mouse livers. RESULTS: The intraoperative NLOI system was used to assess fresh canine NB specimens during veterinary cancer surgeries. Histology-like morphological features were visualized by the combination of four NLOI modalities at the point-of-procedure. The NLOI results provided quantitative information on the tissue microenvironment such as the collagen fiber orientation using Fourier-domain SHG analysis and metabolic profiling by optical redox ratio (ORR) defined by 2PF/(2PF + 3PF). The analyses showed that the canine mammary tumor had more randomly oriented collagen fibers compared to the tumor margin, and hepatocarcinoma had a wider distribution of ORR with a lower mean value compared to the liver fibrosis and the normal-appearing liver. Moreover, the loss of metabolic information during tissue degradation of fresh murine NB specimens was shown by overall intensity decreases in all channels and an increase of mean ORR from 0.94 (standard deviation 0.099) to 0.97 (standard deviation 0.077) during 1-h longitudinal imaging of a rat mammary tumor NB specimen. The tissue response to staurosporine (STS), an apoptotic inducer, from fresh murine liver NB specimens was also observed. The mean ORR decreased from 0.86 to 0.74 in the first 40 min and then increased to 0.8 during the rest of the hour of imaging, compared to the imaging results without the addition of STS, which showed a continuous increase of ORR from 0.72 to 0.75. CONCLUSIONS: A label-free, multimodal NLOI platform reveals microstructural and metabolic information of the fresh NB cores during intraoperative cancer imaging. This system has been demonstrated on animal models to show its potential to provide a more comprehensive histological assessment and a better understanding of the unperturbed tumor microenvironment. Considering tissue degradation, or loss of viability upon fixation, this intraoperative NLOI system has the advantage of immediate assessment of freshly excised tissue specimens at the point of procedure.


Assuntos
Neoplasias da Mama , Imagem Multimodal , Animais , Biópsia por Agulha , Colágeno , Cães , Feminino , Humanos , Camundongos , Imagem Óptica , Ratos , Microambiente Tumoral
11.
J Biophotonics ; 15(9): e202200105, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35686672

RESUMO

A recent theranostic approach to address Alzheimer's disease (AD) utilizes multifunctional targets that both tag and negate the toxicity of AD biomarkers. These compounds, which emit fluorescence with both an activation and a spectral shift in the presence of Aß, were previously characterized with traditional fluorescence imaging for binary characterization. However, these multifunctional compounds have broad and dynamic emission spectra that are dependent on factors such as the local environment, presence of Aß deposits, etc. Since quantitative multiphoton microscopy is sensitive to the binding dynamics of molecules, we characterized the performance of two such compounds, LS-4 and ZY-12-OMe, using Simultaneous Label-free Autofluorescence Multi-harmonic (SLAM) microscopy and Fast Optical Coherence, Autofluorescence Lifetime imaging and Second harmonic generation (FOCALS) microscopy. This study shows that the combination of quantitative multiphoton imaging with multifunctional tags for AD offers new insights into the interaction of these tags with AD biomarkers and the theranostic mechanisms.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/diagnóstico por imagem , Biomarcadores , Corantes , Humanos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Imagem Óptica
12.
Sci Rep ; 12(1): 3438, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35236862

RESUMO

Label-free optical microscopy has matured as a noninvasive tool for biological imaging; yet, it is criticized for its lack of specificity, slow acquisition and processing times, and weak and noisy optical signals that lead to inaccuracies in quantification. We introduce FOCALS (Fast Optical Coherence, Autofluorescence Lifetime imaging, and Second harmonic generation) microscopy capable of generating NAD(P)H fluorescence lifetime, second harmonic generation (SHG), and polarization-sensitive optical coherence microscopy (OCM) images simultaneously. Multimodal imaging generates quantitative metabolic and morphological profiles of biological samples in vitro, ex vivo, and in vivo. Fast analog detection of fluorescence lifetime and real-time processing on a graphical processing unit enables longitudinal imaging of biological dynamics. We detail the effect of optical aberrations on the accuracy of FLIM beyond the context of undistorting image features. To compensate for the sample-induced aberrations, we implemented a closed-loop single-shot sensorless adaptive optics solution, which uses computational adaptive optics of OCM for wavefront estimation within 2 s and improves the quality of quantitative fluorescence imaging in thick tissues. Multimodal imaging with complementary contrasts improves the specificity and enables multidimensional quantification of the optical signatures in vitro, ex vivo, and in vivo, fast acquisition and real-time processing improve imaging speed by 4-40 × while maintaining enough signal for quantitative nonlinear microscopy, and adaptive optics improves the overall versatility, which enable FOCALS microscopy to overcome the limits of traditional label-free imaging techniques.


Assuntos
Imagem Óptica , Óptica e Fotônica , Microscopia de Polarização
13.
Opt Express ; 29(23): 37759-37775, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34808842

RESUMO

Fluorescence lifetime imaging microscopy (FLIM) characterizes samples by examining the temporal properties of fluorescence emission, providing useful contrast within samples based on the local physical and biochemical environment of fluorophores. Despite this, FLIM applications have been limited in scope by either poor accuracy or long acquisition times. Here, we present a method for computational single-photon counting of directly sampled time-domain FLIM data that is capable of accurate fluorescence lifetime and intensity measurements while acquiring over 160 Mega-counts-per-second with sub-nanosecond time resolution between consecutive photon counts. We demonstrate that our novel method of Single-photon PEak Event Detection (SPEED) is more accurate than direct pulse sampling and faster than established photon counting FLIM methods. We further show that SPEED can be implemented for imaging and quantifying samples that benefit from higher -throughput and -dynamic range imaging with real-time GPU-accelerated processing and use this capability to examine the NAD(P)H-related metabolic dynamics of apoptosis in human breast cancer cells. Computational methods for photon counting such as SPEED open up more opportunities for fast and accurate FLIM imaging and additionally provide a basis for future innovation into alternative FLIM techniques.


Assuntos
Fluorescência , Microscopia de Fluorescência/métodos , Fótons , Algoritmos , Animais , Apoptose , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Fluoresceína , Corantes Fluorescentes , Humanos , Processamento de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência/instrumentação , Modelos Animais , NADP/metabolismo , Radiometria/instrumentação , Radiometria/métodos , Ratos , Rodaminas , Fatores de Tempo
14.
Biomed Opt Express ; 12(7): 4003-4019, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34457395

RESUMO

Two-photon fluorescence lifetime imaging microscopy (FLIM) is a widely used technique in biomedical optical imaging. Presently, many two-photon time-domain FLIM setups are limited by long acquisition and postprocessing times that decrease data throughput and inhibit the ability to image fast sub-second processes. Here, we present a versatile two-photon FLIM setup capable of video-rate (up to 25 fps) imaging with graphics processing unit (GPU)-accelerated pixelwise phasor analysis displayed and saved simultaneously with acquisition. The system uses an analog output photomultiplier tube in conjunction with 12-bit digitization at 3.2 GHz to overcome the limited maximum acceptable photon rate associated with the photon counting electronics in many FLIM systems. This allows for higher throughput FLIM acquisition and analysis, and additionally enables the user to assess sample fluorescence lifetime in real-time. We further explore the capabilities of the system to examine the kinetics of Rhodamine B uptake by human breast cancer cells and characterize the effect of pixel dwell time on the reduced nicotinamide adenine dinucleotide and reduced nicotinamide adenine dinucleotide phosphate (NAD(P)H) autofluorescence lifetime estimation accuracy.

15.
Endocrinology ; 162(7)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33959755

RESUMO

Cholesterol has been implicated in the clinical progression of breast cancer, a disease that continues to be the most commonly diagnosed cancer in women. Previous work has identified the cholesterol metabolite 27-hydroxycholesterol (27HC) as a major mediator of the effects of cholesterol on breast tumor growth and progression. 27HC can act as an estrogen receptor (ER) modulator to promote the growth of ERα+ tumors, and as a liver X receptor (LXR) ligand in myeloid immune cells to establish an immune-suppressive program. In fact, the metastatic properties of 27HC require the presence of myeloid cells with neutrophils (polymorphonuclear neutrophils; PMNs) being essential for the increase in lung metastasis in murine models. In an effort to further elucidate the mechanisms by which 27HC alters breast cancer progression, we made the striking finding that 27HC promoted the secretion of extracellular vesicles (EVs), a diverse assortment of membrane bound particles that includes exosomes. The resulting EVs had a size distribution that was skewed slightly larger than EVs generated by treating cells with vehicle. The increase in EV secretion and size was consistent across 3 different subtypes: primary murine PMNs, RAW264.7 monocytic cells, and 4T1 murine mammary cancer cells. Label-free analysis of 27HC-EVs indicated that they had a different metabolite composition to those from vehicle-treated cells. Importantly, 27HC-EVs from primary PMNs promoted tumor growth and metastasis in 2 different syngeneic models, demonstrating the potential role of 27HC-induced EVs in the progression of breast cancer. EVs from PMNs were taken up by cancer cells, macrophages, and PMNs, but not T cells. Since EVs did not alter proliferation of cancer cells, it is likely that their protumor effects are mediated through interactions with myeloid cells. Interestingly, RNA-seq analysis of tumors from 27HC-EV-treated mice do not display significantly altered transcriptomes, suggesting that the effects of 27HC-EVs occur early on in tumor establishment and growth. Future work will be required to elucidate the mechanisms by which 27HC increases EV secretion, and how these EVs promote breast cancer progression. Collectively, however, our data indicate that EV secretion and content can be regulated by a cholesterol metabolite, which may have detrimental effects in terms of disease progression, important findings given the prevalence of both breast cancer and hypercholesterolemia.


Assuntos
Hidroxicolesteróis/farmacologia , Neoplasias Mamárias Experimentais/patologia , Animais , Linhagem Celular Tumoral , Progressão da Doença , Moduladores de Receptor Estrogênico/farmacologia , Vesículas Extracelulares/patologia , Vesículas Extracelulares/fisiologia , Feminino , Hipercolesterolemia/complicações , Camundongos , Metástase Neoplásica/patologia , Transplante de Neoplasias , Neutrófilos/fisiologia , Neutrófilos/ultraestrutura , Células RAW 264.7
16.
Sci Rep ; 11(1): 3308, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33558561

RESUMO

The heterogeneous nature of extracellular vesicles (EVs) creates the need for single EV characterization techniques. However, many common biochemical and functional EV analysis techniques lack single EV resolution. Two-photon fluorescence lifetime imaging microscopy (FLIM) is widely used to functionally characterize the reduced form of nicotinamide adenine dinucleotide and nicotinamide adenine dinucleotide phosphate (NAD(P)H) in cells and tissues. Here, we demonstrate that FLIM can also be used to image and characterize NAD(P)H in single isolated EVs. EVs were isolated using standard differential ultracentrifugation techniques from multiple cell lines and imaged using a custom two-photon FLIM system. The presented data show that the NAD(P)H fluorescence lifetimes in isolated cell-derived EVs follow a wide Gaussian distribution, indicating the presence of a range of different protein-bound and free NAD(P)H species. EV NAD(P)H fluorescence lifetime distribution has a larger standard deviation than that of cells and a significantly different fluorescence lifetime distribution than the nuclei, mitochondria, and cytosol of cells. Additionally, changes in the metabolic conditions of cells were reflected in changes in the mean fluorescence lifetime of NAD(P)H in the produced EVs. These data suggest that FLIM of NAD(P)H could be a valuable tool for EV research.


Assuntos
Vesículas Extracelulares/metabolismo , Microscopia de Fluorescência por Excitação Multifotônica , Imagem Molecular , NADP/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C
17.
Vet Surg ; 50(1): 111-120, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32916007

RESUMO

OBJECTIVE: To determine the diagnostic accuracy of optical coherence tomography (OCT) to assess surgical margins of canine soft tissue sarcoma (STS) and determine the influence of observer specialty and training. STUDY DESIGN: Blinded clinical prospective study. ANIMALS: Twenty-five dogs undergoing surgical excision of STS. METHODS: In vivo and ex vivo surgical margins were imaged with OCT after tumor resection. Representative images and videos were used to generate a training presentation and data sets. These were completed by 16 observers of four specialties (surgery, radiology, pathology, and OCT researchers). Images and videos from data sets were classified as cancerous or noncancerous. RESULTS: The overall sensitivity and specificity were 88.2% and 92.8%, respectively, for in vivo tissues and 82.5% and 93.3%, respectively, for ex vivo specimens. The overall accurate classification for all specimens was 91.4% in vivo and 89.5% ex vivo. There was no difference in accuracy of interpretation of OCT imaging by observers of different specialties or experience levels. CONCLUSION: Use of OCT to accurately assess surgical margins after STS excision was associated with a high sensitivity and specificity among various specialties. Personnel of all specialties and experience levels could effectively be trained to interpret OCT imaging. CLINICAL SIGNIFICANCE: Optical coherence tomography can be used by personnel of different specialty experience levels and from various specialties to accurately identify canine STS in vivo and ex vivo after a short training session. These encouraging results provide evidence to justify further research to assess the ability of OCT to provide real-time assessments of surgical margins and its applicability to other neoplasms.


Assuntos
Doenças do Cão/cirurgia , Margens de Excisão , Sarcoma/veterinária , Tomografia de Coerência Óptica/veterinária , Animais , Cães , Feminino , Masculino , Sarcoma/cirurgia , Sensibilidade e Especificidade , Tomografia de Coerência Óptica/métodos
18.
Biomed Opt Express ; 10(12): 6408-6421, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31853407

RESUMO

Programmed cell death, or apoptosis, is an essential process in development and homeostasis, and disruptions in associated pathways are responsible for a wide variety of diseases such as cancer, developmental abnormalities, and Alzheimer's disease. On the other hand, cell death, in many cases, is the desired outcome of therapeutic treatments targeting diseases such as cancer. Recently, metabolic imaging based on two-photon fluorescence microscopy has been developed and shown to be highly sensitive to certain cell death processes, most notably apoptosis, thus having the potential as an advanced label-free screening tool. However, the typically low acquisition rates of this imaging technique have resulted in a limited throughput approach, allowing only a small population of cells to be tracked at well-separated time points. To address this limitation, a high-speed two-photon fluorescence lifetime imaging microscopy (2P-FLIM) platform capable of video-rate imaging is applied to study and further characterize the metabolic dynamics associated with cell death. Building upon previous work demonstrating the capabilities of this system, this microscope is utilized to study rapid metabolic changes during cell death induction, such as dose-dependency of metabolic response, response in invasive vs. noninvasive cancer cells, and response in an apoptosis-resistant cell line, which is further shown to undergo autophagy in response to toxic stimuli. Results from these experiments show that the early apoptosis-related metabolic dynamics are strongly correlated with important cellular parameters including responsiveness to apoptosis-inducing stimuli. The high speed and sensitivity of the presented imaging approach enables new investigations into this highly dynamic and complex process.

19.
J Biomed Opt ; 24(8): 1-12, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31446681

RESUMO

Angularly resolved elastic light scattering is an established technique for probing the average size of organelles in biological tissue and cellular ensembles. Focusing of the incident light to illuminate no more than one cell at a time restricts the minimum forward-scattering angle θmin that can be detected. Series of simulated single-cell angular-scattering patterns have been generated to explore how size estimates vary as a function of θmin. At a setting of θmin = 20 deg, the size estimates hop unstably between multiple minima in the solution space as simulated noise (mimicking experimentally observed levels) is varied. As θmin is reduced from 20 deg to 10 deg, the instability vanishes, and the variance of estimates near the correct answer also decreases. The simulations thus suggest that robust Mie theory fits to single-cell scattering at 785 nm excitation require measurements down to at least 15 deg. Notably, no such instability was observed at θmin = 20 deg for narrow bead distributions. Accurate sizing of traditional calibration beads is, therefore, insufficient proof that an angular-scattering system is capable of robust analysis of single cells. Experimental support for the simulation results is also presented using measurements on cells fixed with formaldehyde.


Assuntos
Elasticidade , Microscopia/métodos , Tamanho das Organelas , Organelas , Animais , Calibragem , Carcinoma de Células Escamosas , Linhagem Celular Tumoral , Simulação por Computador , Análise de Fourier , Luz , Camundongos , Mitocôndrias , Modelos Biológicos , Tamanho da Partícula , Poliestirenos/química , Reprodutibilidade dos Testes , Espalhamento de Radiação , Razão Sinal-Ruído
20.
ACS Nano ; 12(1): 187-197, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29232104

RESUMO

Nanoparticles (NPs) interact with complex protein milieus in biological fluids, and these interactions have profound effects on NP physicochemical properties and function. Surprisingly, most studies neglect the impact of these interactions, especially with respect to NP-mediated siRNA delivery. Here, the effects of serum on colloidal stability and siRNA delivery of a pH-responsive micellar NP delivery system were characterized. Results show cationic NP-siRNA complexes aggregate in ≥2% serum in buffer, but are stable in serum-free media. Furthermore, nonaggregated NP-siRNA delivered in serum-free media result in 4-fold greater siRNA uptake in vitro, compared to aggregated NP-siRNA. Interestingly, pH-responsive membrane lysis behavior, which is required for endosomal escape, and NP-siRNA dissociation, necessary for gene knockdown, are significantly reduced in serum. Consistent with these data, nonaggregated NP-siRNA in serum-free conditions result in highly efficient gene silencing, even at doses as low as 5 nM siRNA. NP-siRNA diameter was measured at albumin and IgG levels mimicking biological fluids. Neither albumin nor IgG alone induces NP-siRNA aggregation, implicating other serum proteins in NP colloidal instability. Finally, as a proof-of-principle that stability is maintained in established in vivo models, transmission electron microscopy reveals NP-siRNA are taken up by ductal epithelial cells in a nonaggregated state when injected retroductally into mouse salivary glands in vivo. Overall, this study shows serum-induced NP-siRNA aggregation significantly diminishes efficiency of siRNA delivery by reducing uptake, pH-responsive membrane lysis activity, and NP-siRNA dissociation. Moreover, these results highlight the importance of local NP-mediated drug delivery and are broadly applicable to other drug delivery systems.


Assuntos
Preparações de Ação Retardada/metabolismo , Micelas , Nanopartículas/metabolismo , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/farmacocinética , Soro/metabolismo , Animais , Coloides/metabolismo , Feminino , Técnicas de Transferência de Genes , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Glândulas Salivares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...