Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 659: 124216, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38734272

RESUMO

The nasal administration route has been studied for the delivery of active molecules directed to the Central Nervous System, thanks to the anatomical connection between the nasal cavity and the brain. Dimethyl fumarate is used to treat relapsing-remitting multiple sclerosis, with a role as an immunomodulator towards T- T-cells and a cytoprotector towards neurons and glial cells. Its use in therapy is hindered by its low aqueous solubility, and low stability, due to hydrolysis and sublimation at room temperature. To overcome this limitation, in this study we evaluated the feasibility of using two amorphous ß-cyclodextrin derivatives, namely hydroxypropyl ß-cyclodextrin and methyl ß-cyclodextrin, to obtain a nasally administrable powder with a view to nose-to-brain administration. Initially, the interaction product was studied using different analytical methods (differential scanning calorimetry, Fourier transform infrared spectroscopy and powder X-ray diffraction) to detect the occurrence of binary product formation, while phase solubility analysis was used to probe the complexation in solution. The dimethyl fumarate-cyclodextrin binary product showing best solubility and stability properties was subsequently used in the development of a chitosan-based mucoadhesive nasally administrable powder comparing different preparative methods. The best performance in terms of both hydrolytic stability and DMF recovery was achieved by the powder obtained via freeze-drying.


Assuntos
Administração Intranasal , Quitosana , Fumarato de Dimetilo , Estabilidade de Medicamentos , Pós , Solubilidade , beta-Ciclodextrinas , Fumarato de Dimetilo/administração & dosagem , Fumarato de Dimetilo/química , Fumarato de Dimetilo/farmacocinética , Quitosana/química , Quitosana/administração & dosagem , beta-Ciclodextrinas/química , beta-Ciclodextrinas/administração & dosagem , Encéfalo/metabolismo , 2-Hidroxipropil-beta-Ciclodextrina/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Varredura Diferencial de Calorimetria , Difração de Raios X/métodos
2.
Heliyon ; 9(11): e21416, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027871

RESUMO

Cyclodextrins (CD) are used extensively in the pharmaceutical industry to improve the water solubility and bioavailability of drugs. Preparing ternary systems by applying a third component can enhance these beneficial effects. The complexation methods of these ternary systems are the same as those of two-component complexes. These methods are solvent (co-evaporation, co-precipitation, etc.) or solventless "green" techniques (co-grinding, microwave irradiation, etc.). Using solvent-free methods is considered to be an economically and environmentally desirable technology. This study aimed to prepare ternary systems by the co-grinding method and evaluate the effect of a third component by comparing it to products obtained by solvent methods, binary systems, and marketed products. For that, we used terbinafine hydrochloride as a model drug, sulfobutyl-ether-beta-cyclodextrin as a complexation agent and 5 or 15 w/w% of polyvinylpyrrolidone K-90 (PVP) or hydroxypropyl methylcellulose (HPMC) as auxiliary components. Physicochemical evaluation (X-Ray Diffractometry, Differential Scanning Calorimetry, Thermogravimetry) showed that new solid phases were formed, while Scanning Electron Microscopy was performed to study morphological aspects of the products. Fourier transform infrared spectroscopic measurements suggested different intermolecular interactions depending on the type of polymer. In vitro dissolution studies showed beneficial effects of CD and further improvement with the applied polymers. Products showed less cell toxicity with one exception. Both polymers enhanced the physicochemical and in vitro properties, suggesting a greater bioavailability of the model drug. However, the percentage of polymers applied did not appear to be an influencing factor for these properties.

3.
Expert Opin Drug Deliv ; 20(11): 1657-1679, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38014509

RESUMO

OBJECTIVE: Ferulic acid (Fer) displays antioxidant/anti-inflammatory properties useful against neurodegenerative diseases. To increase Fer uptake and its central nervous system residence time, a dimeric prodrug, optimizing the Fer loading on nasally administrable solid lipid microparticles (SLMs), was developed. METHODS: The prodrug was synthesized as Fer dimeric conjugate methylated on the carboxylic moiety. Prodrug antioxidant/anti-inflammatory properties and ability to release Fer in physiologic environments were evaluated. Tristearin or stearic acid SLMs were obtained by hot emulsion technique. In vivo pharmacokinetics were quantified by HPLC. RESULTS: The prodrug was able to release Fer in physiologic environments (whole blood and brain homogenates) and induce in vitro antioxidant/anti-inflammatory effects. Its half-life in rats was 18.0 ± 1.9 min. Stearic acid SLMs, exhibiting the highest prodrug loading and dissolution rate, were selected for nasal administration to rats (1 mg/kg dose), allowing to obtain high prodrug bioavailability and prolonged residence in the cerebrospinal fluid, showing AUC (Area Under Concentration) values (108.5 ± 3.9 µg∙mL-1∙min) up to 30 times over those of Fer free drug, after its intravenous/nasal administration (3.3 ± 0.3/5.16 ± 0.20 µg∙mL-1∙min, respectively) at the same dose. Chitosan presence further improved the prodrug brain uptake. CONCLUSIONS: Nasal administration of prodrug-loaded SLMs can be proposed as a noninvasive approach for neurodegenerative disease therapy.


Assuntos
Doenças Neurodegenerativas , Pró-Fármacos , Ratos , Animais , Administração Intranasal , Portadores de Fármacos , Antioxidantes/farmacologia , Encéfalo , Anti-Inflamatórios , Tamanho da Partícula
4.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-37259394

RESUMO

Inadequate aqueous solubilities of bioactive compounds hinder their ability to be developed for medicinal applications. The potent antioxidant pterostilbene (PTB) is a case in point. The aim of this study was to use a series of modified water-soluble cyclodextrins (CDs), namely, hydroxypropyl ß-CD (HPßCD), dimethylated ß-CD (DIMEB), randomly methylated ß-CD (RAMEB), and sulfobutyl ether ß-CD sodium salt (SBECD) to prepare inclusion complexes of PTB via various solid, semi-solid, and solution-based treatments. Putative CD-PTB products generated by solid-state co-grinding, kneading, irradiation with microwaves, and the evaporative treatment of CD-PTB solutions were considered to have potential for future applications. Primary analytical methods for examining CD-PTB products included differential scanning calorimetry and Fourier transform infrared spectroscopy to detect the occurrence of binary complex formation. Phase solubility analysis was used to probe CD-PTB complexation in an aqueous solution. Complexation was evident in both the solid-state and in solution. Complex association constants (K1:1) in an aqueous solution spanned the approximate range of 15,000 to 55,000 M-1; the values increased with the CDs in the order HPßCD < DIMEB < RAMEB < SBECD. Significant PTB solubility enhancement factors were recorded at 100 mM CD concentrations, the most accurately determined values being in the range 700-fold to 1250-fold.

5.
Pharmaceutics ; 15(6)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37376027

RESUMO

Phytochemicals, produced as secondary plant metabolites, have shown interesting potential therapeutic activities against neurodegenerative diseases and cancer. Unfortunately, poor bioavailability and rapid metabolic processes compromise their therapeutic use, and several strategies are currently proposed for overcoming these issues. The present review summarises strategies for enhancing the central nervous system's phytochemical efficacy. Particular attention has been paid to the use of phytochemicals in combination with other drugs (co-administrations) or administration of phytochemicals as prodrugs or conjugates, particularly when these approaches are supported by nanotechnologies exploiting conjugation strategies with appropriate targeting molecules. These aspects are described for polyphenols and essential oil components, which can improve their loading as prodrugs in nanocarriers, or be part of nanocarriers designed for targeted co-delivery to achieve synergistic anti-glioma or anti-neurodegenerative effects. The use of in vitro models, able to simulate the blood-brain barrier, neurodegeneration or glioma, and useful for optimizing innovative formulations before their in vivo administration via intravenous, oral, or nasal routes, is also summarised. Among the described compounds, quercetin, curcumin, resveratrol, ferulic acid, geraniol, and cinnamaldehyde can be efficaciously formulated to attain brain-targeting characteristics, and may therefore be therapeutically useful against glioma or neurodegenerative diseases.

6.
Pharmaceutics ; 15(4)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37111564

RESUMO

Berberine (BBR) is known for its antitumor activity and photosensitizer properties in anti-cancer photodynamic therapy (PDT), and it has previously been favorably assayed against glioblastoma multiforme (GBM)-derived cells. In this work, two BBR hydrophobic salts, dodecyl sulfate (S) and laurate (L), have been encapsulated in PLGA-based nanoparticles (NPs), chitosan-coated by the addition of chitosan oleate in the preparation. NPs were also further functionalized with folic acid. All the BBR-loaded NPs were efficiently internalized into T98G GBM established cells, and internalization increased in the presence of folic acid. However, the highest mitochondrial co-localization percentages were obtained with BBR-S NPs without folic acid content. In the T98G cells, BBR-S NPs appeared to be the most efficient in inducing cytotoxicity events and were therefore selected to assess the effect of photodynamic stimulation (PDT). As a result, PDT potentiated the viability reduction for the BBR-S NPs at all the studied concentrations, and a roughly 50% reduction of viability was obtained. No significant cytotoxic effect on normal rat primary astrocytes was observed. In GBM cells, a significant increase in early and late apoptotic events was scored by BBR NPs, with a further increase following the PDT scheme. Furthermore, a significantly increased depolarization of mitochondria was highlighted following BBR-S NPs' internalization and mostly after PDT stimulation, compared to untreated and PDT-only treated cells. In conclusion, these results highlighted the efficacy of the BBR-NPs-based strategy coupled with photoactivation approaches to induce favorable cytotoxic effects in GBM cells.

7.
Antioxidants (Basel) ; 12(2)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36829832

RESUMO

Clove oil (CO) is a powerful antioxidant essential oil (EO) with anti-inflammatory, anesthetic, and anti-infective properties. It can be therefore considered a good candidate for wound-healing applications, especially for chronic or diabetic wounds or burns, where the balance of reactive oxygen species (ROS) production and detoxification is altered. However, EOs require suitable formulations to be efficiently administered in moist wound environments. Chitosan hydrophobically modified by an ionic interaction with oleic acid (chitosan oleate, CSO) was used in the present work to stabilize CO nanoemulsions (NEs). The dimensions of the NE were maintained at around 300 nm as the volume distribution for up to six months, and the CO content did not decrease to under 80% over 4 months, confirming the good stabilizing properties of CSO. The antioxidant properties of the CO NE were evaluated in vitro by a 2,2-diphenil-2-picrylhydrazyl hydrate (DPPH) assay, and in fibroblast cell lines by electron paramagnetic resonance (EPR) using α-phenyl-N-tert-butyl nitrone (PBN) as a spin trap; a protective effect was obtained comparable to that obtained with α-tocopherol treatment. In a murine burn model, the ability of CO formulations to favor macroscopic wound closure was evidenced, and a histological analysis revealed a positive effect of the CO NE on the reparation of the lesion after 18 days. Samples of wounds at 7 days were subjected to a histological analysis and parallel dosage of lipid peroxidation by means of a thiobarbituric acid-reactive substances (TBARS) assay, confirming the antioxidant and anti-inflammatory activity of the CO NE.

8.
Pharmaceutics ; 14(8)2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36015366

RESUMO

Indocyanine green (ICG) is a safe dye widely used in the biomedical field. Its photodynamic effect (PDT), originating from laser irradiation at 803 nm, opens interesting perspectives in theranostic applications. To overcome its low water stability, ICG can be shielded with nanoparticles (NPs). In this work, previously developed NPs based on poly lactic-co-glycolic acid (PLGA) coated with chitosan oleate (CS-OA) and loaded with resveratrol as a hydrophobic model drug have been proposed as an ICG carrier. These systems have been selected for their observed immunostimulatory properties. The possible loading of the dye by adsorption onto NP surface by electrostatic interaction was studied here in comparison with the encapsulation into the PLGA core. The ICG-chitosan (CS) interaction has been characterized by spectrophotometry, spectroscopy and in-cell in vitro assays. Fluorescence quenching was observed due to the ionic interaction between ICG and CS and was studied considering the dye:polymer stoichiometry and the effect of the NP dilution in cell culture medium (DMEM). The NP systems have been compared in vitro, assessing their behaviour in Caco-2 cell lines. A reduction in cell viability was observed after irradiation of ICG associated with NPs, evident also for the samples loaded by adsorption. These findings open the opportunity to exploit the association of PDT's effect on ICG with the properties of CS-OA coated NPs, whose immunostimulatory effect can be associated with PDT mechanism in cancer therapy.

9.
Pharmaceutics ; 13(10)2021 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-34684009

RESUMO

Oligonucleotide therapeutics such as miRNAs and siRNAs represent a class of molecules developed to modulate gene expression by interfering with ribonucleic acids (RNAs) and protein synthesis. These molecules are characterized by strong instability and easy degradation due to nuclease enzymes. To avoid these drawbacks and ensure efficient delivery to target cells, viral and non-viral vectors are the two main approaches currently employed. Viral vectors are one of the major vehicles in gene therapy; however, the potent immunogenicity and the insertional mutagenesis is a potential issue for the patient. Non-viral vectors, such as polymeric nanocarriers, provide a safer and more efficient delivery of RNA-interfering molecules. The aim of this work is to employ PLGA core nanoparticles shell-coated with chitosan oleate as siRNA carriers. An siRNA targeted on HIV-1, directed against the viral Tat/Rev transcripts was employed as a model. The ionic interaction between the oligonucleotide's moieties, negatively charged, and the positive surface charges of the chitosan shell was exploited to associate siRNA and nanoparticles. Non-covalent bonds can protect siRNA from nuclease degradation and guarantee a good cell internalization and a fast release of the siRNA into the cytosolic portion, allowing its easy activation.

10.
Pharmaceutics ; 13(9)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34575417

RESUMO

Tissue repair and regeneration is an interdisciplinary field focusing on developing bioactive substitutes aimed at restoring pristine functions of damaged, diseased tissues. Biomaterials, intended as those materials compatible with living tissues after in vivo administration, play a pivotal role in this area and they have been successfully studied and developed for several years. Namely, the researches focus on improving bio-inert biomaterials that well integrate in living tissues with no or minimal tissue response, or bioactive materials that influence biological response, stimulating new tissue re-growth. This review aims to gather and introduce, in the context of Italian scientific community, cutting-edge advancements in biomaterial science applied to tissue repair and regeneration. After introducing tissue repair and regeneration, the review focuses on biodegradable and biocompatible biomaterials such as collagen, polysaccharides, silk proteins, polyesters and their derivatives, characterized by the most promising outputs in biomedical science. Attention is pointed out also to those biomaterials exerting peculiar activities, e.g., antibacterial. The regulatory frame applied to pre-clinical and early clinical studies is also outlined by distinguishing between Advanced Therapy Medicinal Products and Medical Devices.

11.
Cancers (Basel) ; 13(17)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34503247

RESUMO

Surgical resection is the gold standard for the treatment of many kinds of tumor, but its success depends on the early diagnosis and the absence of metastases. However, many deep-seated tumors (liver, pancreas, for example) are often unresectable at the time of diagnosis. Chemotherapies and radiotherapies are a second line for cancer treatment. The "enhanced permeability and retention" (EPR) effect is believed to play a fundamental role in the passive uptake of drug-loaded nanocarriers, for example polymeric nanoparticles, in deep-seated tumors. However, criticisms of the EPR effect were recently raised, particularly in advanced human cancers: obstructed blood vessels and suppressed blood flow determine a heterogeneity of the EPR effect, with negative consequences on nanocarrier accumulation, retention, and intratumoral distribution. Therefore, to improve the nanomedicine uptake, there is a strong need for "EPR enhancers". Electrochemotherapy represents an important tool for the treatment of deep-seated tumors, usually combined with the systemic (intravenous) administration of anticancer drugs, such as bleomycin or cisplatin. A possible new strategy, worthy of investigation, could be the use of this technique as an "EPR enhancer" of a target tumor, combined with the intratumoral administration of drug-loaded nanoparticles. This is a general overview of the rational basis for which EP could be envisaged as an "EPR enhancer" in nanomedicine.

12.
Pharmaceutics ; 13(8)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34452141

RESUMO

Cyclodextrins (CDs) are oligosaccharides widely used in the pharmaceutical field. In this review, a detailed examination of the literature of the last two decades has been made to understand the role of CDs in nasal drug delivery systems. In nasal formulations, CDs are used as pharmaceutical excipients, as solubilizers and absorption promoters, and as active ingredients due to their several biological activities (antiviral, antiparasitic, anti-atherosclerotic, and neuroprotective). The use of CDs in nasal formulations allowed obtaining versatile drug delivery systems intended for local and systemic effects, as well as for nose-to-brain transport of drugs. In vitro and in vivo models currently employed are suitable to analyze the effects of CDs in nasal formulations. Therefore, CDs are versatile pharmaceutical materials, and due to the continual synthesis of new CDs derivatives, the research on the new nasal applications is an interesting field evolving in the coming years, to which Italian research will still contribute.

13.
Pharmaceuticals (Basel) ; 14(6)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200627

RESUMO

In the last decades, it has been demonstrated that the regenerative therapeutic efficacy of mesenchymal stromal cells is primarily due to the secretion of soluble factors and extracellular vesicles, collectively known as secretome. In this context, our work described the preparation and characterization of a freeze-dried secretome (Lyosecretome) from adipose tissue-derived mesenchymal stromal cells for the therapy of equine musculoskeletal disorder. An intraarticular injectable pharmaceutical powder has been formulated, and the technological process has been validated in an authorized facility for veterinary clinical-use medicinal production. Critical parameters for quality control and batch release have been identified regarding (i) physicochemical properties; (ii) extracellular vesicle morphology, size distribution, and surface biomarker; (iii) protein and lipid content; (iv) requirements for injectable pharmaceutical dosage forms such as sterility, bacterial endotoxin, and Mycoplasma; and (v) in vitro potency tests, as anti-elastase activity and proliferative activity on musculoskeletal cell lines (tenocytes and chondrocytes) and mesenchymal stromal cells. Finally, proteins putatively responsible for the biological effects have been identified by Lyosecretome proteomic investigation: IL10RA, MXRA5, RARRES2, and ANXA1 modulate the inflammatory process RARRES2, NOD1, SERPINE1, and SERPINB9 with antibacterial activity. The work provides a proof-of-concept for the manufacturing of clinical-grade equine freeze-dried secretome, and prototypes are now available for safety and efficacy clinical trials in the treatment of equine musculoskeletal diseases.

14.
Pharmaceutics ; 13(2)2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33530643

RESUMO

Injuries to the nervous system affect more than one billion people worldwide, and dramatically impact on the patient's quality of life. The present work aimed to design and develop a gellan gum (GG)-based composite system for the local delivery of the neuroprotective sigma-1 receptor agonist, 1-[3-(1,1'-biphen)-4-yl] butylpiperidine (RC-33), as a potential tool for the treatment of tissue nervous injuries. The system, consisting of cross-linked electrospun nanofibers embedded in a RC-33-loaded freeze-dried matrix, was designed to bridge the lesion gap, control drug delivery and enhance axonal regrowth. The gradual matrix degradation should ensure the progressive interaction between the inner fibrous mat and the surrounding cellular environment. Nanofibers, prepared by electrospinning polymeric solutions containing GG, two different grades of poly (ethylene oxide) and poloxamer, were cross-linked with calcium ions. GG-based matrices, loaded with different amounts of RC-33, were prepared by freeze-drying. Dialysis studies and solid-state characterization pointed out the formation of an interaction product between GG and RC-33. RC-33-loaded freeze-dried matrices were characterized by the capability to absorb a high buffer content, forming a gel with marked viscoelastic properties, and by RC-33 controlled release properties. The presence of cross-linked nanofibers increased matrix mechanical resistance.

15.
Pharmaceutics ; 14(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35056903

RESUMO

Pterostilbene (3,5-dimethoxy-4'-hydroxystilbene, PTB) is a natural dietary stilbene, occurring primarily in blueberries and Pterocarpus marsupium heartwood. The interest in this compound is related to its different biological and pharmacological properties, such as its antioxidant, anti-inflammatory, and anticarcinogenic activities and its capacity to reduce and regulate cholesterol and blood sugar levels. Nevertheless, its use in therapy is hindered by its low aqueous solubility; to overcome this limitation we studied the feasibility of the use of cyclodextrins (CDs) as solubility-enhancing agents. CDs are natural macrocyclic oligomers composed of α-d-glucose units linked by α-1,4 glycosidic bonds to form torus-shaped molecules, responsible for inclusion complex formation with organic molecules. In particular, the aim of this study was to evaluate the feasibility of complexation between PTB and native CDs using various preparative methods. The isolated solid products were characterized using differential scanning calorimetry (DSC), simultaneous thermogravimetric/DSC analysis (TGA/DSC), Fourier transform infrared (FT-IR) spectroscopy, and X-ray diffraction (XRD) on powder and single crystals. The results indicated little or no evidence of the affinity of PTB to complex with α-CD using the kneading method. However, with ß-CD and γ-CD thermal analysis revealed an interaction which was also corroborated by FT-IR and 1H-NMR spectroscopy. With ß-CD, a hydrated complex of PTB was isolated and its characterization by single-crystal XRD revealed, for the first time, the mode of inclusion of the PTB molecule in the cavity of a CD. To complement the solid-state data, liquid-phase studies were carried out to establish the effect of CDs on the aqueous solubility of PTB and to determine the complex stoichiometries and the association constants for complex formation. Phase-solubility studies showed AL-type profiles for α- and ß-CD and a BS profile for γ-CD, with K1:1 values of 1144, 4950, and 133 M-1 for α-CD·PTB, ß-CD·PTB, and γ-CD·PTB, respectively. The stoichiometry of CD·PTB complexes, determined by Job's method, revealed for each system a 1:1 molar ratio. The dissolution rate of PTB was approximately doubled just by employing simple physical mixtures, but the best performance was achieved by products obtained via kneading and co-precipitation, which effected the complete dissolution of PTB in 40 and 20 min for ß-CD and γ-CD, respectively.

16.
Pharmaceutics ; 12(12)2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33371285

RESUMO

Oxidative stress has a key role in the pathogenesis of neurodegenerative disorders such as Alzheimer's, Parkinson's, and Huntington's diseases and can be an important cause of the damages in cerebral ischemia. Oxidative stress arises from high levels of reactive oxygen species (ROS). Consequently, on this rational base, antioxidants (many of natural origin) are proposed as potential drugs to prevent ROS noxious actions because they can protect the target tissues from the oxidative stress. However, the potential of antioxidants is limited, owing to the presence of the blood-brain barrier (BBB), which is difficult to cross with a consequent low bioavailability of the drug into the brain after systemic (intravenous, intraperitoneal, oral) administrations. One strategy to improve the delivery of antioxidants to the brain involves the use of the so-called nose-to-brain route, with the administration of the antioxidant in specific nasal formulations and its passage to the central nervous system (CNS) mainly through the olfactory nerve way. In the current literature, many examples show encouraging results in studies carried out in cell cultures and in animal models about the potential neuroprotective effects of antioxidants when administered through the nose. This review concerns the nose-to-brain route for the brain targeting of antioxidants as a potential tool for the therapy of neurological diseases.

17.
Materials (Basel) ; 13(21)2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105584

RESUMO

Collagen, thanks to its biocompatibility, biodegradability and weak antigenicity, is widely used in dressings and scaffolds, also as electrospun fibers. Its mechanical stability can be improved by adding polycaprolactone (PCL), a synthetic and biodegradable aliphatic polyester. While previously collagen/PCL combinations were electrospun in solvents such as hexafluoroisopropanol (HFIP) or trifluoroethanol (TFE), more recently literature describes collagen/PCL nanofibers obtained in acidic aqueous solutions. A good morphology of the fibers represents in this case still a challenge, especially for high collagen/PCL ratios. In this work, thanks to preliminary rheological and physicochemical characterization of the solutions and to a Design of Experiments (DOE) approach on process parameters, regular and dimensionally uniform fibers were obtained with collagen/PCL ratios up to 1:2 and 1:1 w/w. Collagen ratio appeared relevant for mechanical strength of dry and hydrated fibers. WAXS and FTIR analysis showed that collagen denaturation is related both to the medium and to the electrospinning process. After one week in aqueous environment, collagen release was complete and a concentration dependent stimulatory effect on fibroblast growth was observed, suggesting the fiber suitability for wound healing. The positive effect of collagen on mechanical properties and on fibroblast biocompatibility was confirmed by a direct comparison of nanofiber performance after collagen substitution with gelatin.

18.
Int J Pharm ; 589: 119861, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32911044

RESUMO

Colon drug delivery is aimed at the administration of selected drugs to act locally or even systematically. Corticosteroid drugs are often used exerting even pronounced side effects due to systemic absorption. Here a new drug delivery system (DDS) based on the chemical conjugation of ß-cyclodextrin to inulin to form the INUCD bioconjugate is described. It was designed with the aim to provide this DDS with colon degradable portions (inulin) which degradation products have direct beneficial effects on the well-being of the colon and with a carrier that can solubilize hydrophobic drugs (ß-cyclodextrin). This system was specifically designed to promote a local/topical activity with a significant reduction of the drug systemic absorption. The INUCD bioconjugate was obtained by a simple chemistry binding ß-cyclodextrin to an inulin succinate previously synthesized. The bioconjugate was then characterized in terms of physicochemical properties by ATR-FTIR, 1H NMR, DSC and TGA, DLS and SEM. Furthermore phase-solubility test by using curcumin as a model drug were performed as well as biologic evaluations for cytocompatibility and drug transport across in vitro simulated physiological barriers. Moreover enzymatic degradation studies by inulinase were performed. From the gained results a predictable local drug release of the payload could be attained so allowing a local delivery of e.g. corticosteroids thus avoiding a systemic absorption especially in prolonged therapies.


Assuntos
Preparações Farmacêuticas , beta-Ciclodextrinas , Colo , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Inulina , Solubilidade
19.
Pharmaceutics ; 12(4)2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32326171

RESUMO

Mesenchymal stem/stromal cells (MSCs) are a therapeutic target to promote tissue regeneration, mainly when oxidative stress-mediated damage is involved in disease pathogenesis. Here, slow-release silk sericin nanoparticles (SNPs) loaded with natural antioxidant polyphenols were developed to sustain regeneration by tissue-resident MSCs. SNPs were prepared by exploiting a self-assembly method with poloxamer and were loaded with proanthocyanidins (P), quercetin (Q) or epigallocatechin gallate (E). SNPs, with a diameter less than 150 nm, were able to encapsulate both hydrophilic (P and E) and hydrophobic (Q) drugs. A slow and controlled release was obtained from SNPs for all the actives in PBS, while in EtOH, Q and E showed a burst release but P did not. Kinetic models revealed lower diffusion of P than other biomolecules, probably due to the higher steric hindrance of P. The in vitro anti-oxidant, anti-elastase and anti-tyrosinase properties of SNPs were assessed: loading the P and E into SNPs preserved the in vitro biological activities whereas for Q, the anti-elastase activity was strongly improved. Moreover, all formulations promoted MSC metabolic activity over 72 h. Finally, SNPs exhibited a strong ability to protect MSCs from oxidative stress, which supports their potential use for regenerative purposes mediated by tissue-resident MSCs.

20.
Nanomaterials (Basel) ; 10(4)2020 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-32235344

RESUMO

Polymeric micelles based on amphiphilic polysaccharides have some advantages as a carrier of poorly soluble lipophilic drugs thanks to their characteristic "core-shell" structure. Previously, ionic polymeric micelles based on chitosan and fatty acids have been developed. The aim of the present study was the preparation and characterization of hyaluronic acid (HA) derivatives by direct ionic interaction between the HA carboxylic groups and the amine groups of dodecyl amine (DDA) and hexadecyl amine (HDA). The HA-HDA polymeric micelles were loaded with a poorly soluble hydrophobic antifungal drug, clotrimazole (CLO). A 23 full factorial experimental design was used to evaluate the effect of the following factors: HA/HDA ratio from 1:0.25 to 1:0.75, cholesterol (CHOL%) as percentage of HA from 10% to 30%, and preparation temperature from 20 to 40 °C. As dependent variables (responses), nanoparticle dimensions and clotrimazole concentration in the final colloidal dispersion were considered. To optimize the drug final concentration, the design was therefore expanded into a rotatable central composite design (CCD). The effects of the formulation variables and the composition of the optimized formulation were confirmed by a mixture design. Physicochemical characterization of the optimized formulation was performed, confirming the ionic interaction between the polysaccharide and the HDA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...