Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6693, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37872209

RESUMO

Group A streptococcus (GAS) is a major bacterial pathogen responsible for both local and systemic infections in humans. The molecular mechanisms that contribute to disease heterogeneity remain poorly understood. Here we show that the transition from a local to a systemic GAS infection is paralleled by pathogen-driven alterations in IgG homeostasis. Using animal models and a combination of sensitive proteomics and glycoproteomics readouts, we documented the progressive accumulation of IgG cleavage products in plasma, due to extensive enzymatic degradation triggered by GAS infection in vivo. The level of IgG degradation was modulated by the route of pathogen inoculation, and mechanistically linked to the combined activities of the bacterial protease IdeS and the endoglycosidase EndoS, upregulated during infection. Importantly, we show that these virulence factors can alter the structure and function of exogenous therapeutic IgG in vivo. These results shed light on the role of bacterial virulence factors in shaping GAS pathogenesis, and potentially blunting the efficacy of antimicrobial therapies.


Assuntos
Proteínas de Bactérias , Infecções Estreptocócicas , Humanos , Animais , Proteínas de Bactérias/metabolismo , Imunoglobulina G , Infecções Estreptocócicas/microbiologia , Streptococcus pyogenes , Fatores de Virulência/metabolismo
2.
Biotechnol Adv ; 67: 108206, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37354999

RESUMO

Over recent decades, therapeutic proteins have had widespread success in treating a myriad of diseases. Glycosylation, a near universal feature of this class of drugs, is a critical quality attribute that significantly influences the physical properties, safety profile and biological activity of therapeutic proteins. Optimizing protein glycosylation, therefore, offers an important avenue to developing more efficacious therapies. In this review, we discuss specific examples of how variations in glycan structure and glycoengineering impacts the stability, safety, and clinical efficacy of protein-based drugs that are already in the market as well as those that are still in preclinical development. We also highlight the impact of glycosylation on next generation biologics such as T cell-based cancer therapy and gene therapy.


Assuntos
Anticorpos Monoclonais , Neoplasias , Humanos , Glicosilação , Anticorpos Monoclonais/química , Polissacarídeos/química , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Terapia Baseada em Transplante de Células e Tecidos
3.
STAR Protoc ; 4(2): 102162, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36920914

RESUMO

GlyCompareCT is a portable command-line tool to facilitate downstream glycomic data analyses, by addressing data inherent sparsity and non-independence. Inputting glycan abundances, users can run GlyCompareCT with one line of code to obtain the abundances of a minimal substructure set, named glycomotif, thereby quantifying hidden biosynthetic relationships between measured glycans. Optional parameters tuning and annotation are supported for personal preference. For complete details on the use and execution of this protocol, please refer to Bao et al. (2021).1.

4.
Pharmacol Res Perspect ; 11(1): e01056, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36708179

RESUMO

The antiplatelet effect of polyunsaturated fatty acids is primarily attributed to its metabolism to bioactive metabolites by oxygenases, such as lipoxygenases (LOX). Platelets have demonstrated the ability to generate 15-LOX-derived metabolites (15-oxylipins); however, whether 15-LOX is in the platelet or is required for the formation of 15-oxylipins remains unclear. This study seeks to elucidate whether 15-LOX is required for the formation of 15-oxylipins in the platelet and determine their mechanistic effects on platelet reactivity. In this study, 15-HETrE, 15-HETE, and 15-HEPE attenuated collagen-induced platelet aggregation, and 15-HETrE inhibited platelet aggregation induced by different agonists. The observed anti-aggregatory effect was due to the inhibition of intracellular signaling including αIIbß3 and protein kinase C activities, calcium mobilization, and granule secretion. While 15-HETrE inhibited platelets partially through activation of peroxisome proliferator-activated receptor ß (PPARß), 15-HETE also inhibited platelets partially through activation of PPARα. 15-HETrE, 15-HETE, or 15-HEPE inhibited 12-LOX in vitro, with arachidonic acid as the substrate. Additionally, a 15-oxylipin-dependent attenuation of 12-HETE level was observed in platelets following ex vivo treatment with 15-HETrE, 15-HETE, or 15-HEPE. Platelets treated with DGLA formed 15-HETrE and collagen-induced platelet aggregation was attenuated only in the presence of ML355 or aspirin, but not in the presence of 15-LOX-1 or 15-LOX-2 inhibitors. Expression of 15-LOX-1, but not 15-LOX-2, was decreased in leukocyte-depleted platelets compared to non-depleted platelets. Taken together, these findings suggest that 15-oxylipins regulate platelet reactivity; however, platelet expression of 15-LOX-1 is low, suggesting that 15-oxylipins may be formed in the platelet through a 15-LOX-independent pathway.


Assuntos
Ácidos Graxos , Oxilipinas , Araquidonato 15-Lipoxigenase , Eicosanoides , Inibidores de Lipoxigenase/farmacologia , Receptores Depuradores Classe E
5.
mSystems ; 7(4): e0039522, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35913192

RESUMO

Vascular dysfunction and organ failure are two distinct, albeit highly interconnected, clinical outcomes linked to morbidity and mortality in human sepsis. The mechanisms driving vascular and parenchymal damage are dynamic and display significant molecular cross talk between organs and tissues. Therefore, assessing their individual contribution to disease progression is technically challenging. Here, we hypothesize that dysregulated vascular responses predispose the organism to organ failure. To address this hypothesis, we have evaluated four major organs in a murine model of Staphylococcus aureus sepsis by combining in vivo labeling of the endothelial cell surface proteome, data-independent acquisition (DIA) mass spectrometry, and an integrative computational pipeline. The data reveal, with unprecedented depth and throughput, that a septic insult evokes organ-specific proteome responses that are highly compartmentalized, synchronously coordinated, and significantly correlated with the progression of the disease. These responses include abundant vascular shedding, dysregulation of the intrinsic pathway of coagulation, compartmentalization of the acute phase response, and abundant upregulation of glycocalyx components. Vascular cell surface proteome changes were also found to precede bacterial invasion and leukocyte infiltration into the organs, as well as to precede changes in various well-established cellular and biochemical correlates of systemic coagulopathy and tissue dysfunction. Importantly, our data suggest a potential role for the vascular proteome as a determinant of the susceptibility of the organs to undergo failure during sepsis. IMPORTANCE Sepsis is a life-threatening response to infection that results in immune dysregulation, vascular dysfunction, and organ failure. New methods are needed for the identification of diagnostic and therapeutic targets. Here, we took a systems-wide approach using data-independent acquisition (DIA) mass spectrometry to track the progression of bacterial sepsis in the vasculature leading to organ failure. Using a murine model of S. aureus sepsis, we were able to quantify thousands of proteins across the plasma and parenchymal and vascular compartments of multiple organs in a time-resolved fashion. We showcase the profound proteome remodeling triggered by sepsis over time and across these compartments. Importantly, many vascular proteome alterations precede changes in traditional correlates of organ dysfunction, opening a molecular window for the discovery of early markers of sepsis progression.


Assuntos
Bacteriemia , Sepse , Camundongos , Humanos , Animais , Staphylococcus aureus , Proteoma , Insuficiência de Múltiplos Órgãos/metabolismo , Modelos Animais de Doenças
6.
Arch Biochem Biophys ; 727: 109317, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-35709965

RESUMO

Human 15-lipoxygenases (LOX) are critical enzymes in the inflammatory process, producing various pro-resolution molecules, such as lipoxins and resolvins, but the exact role each of the two 15-LOXs in these biosynthetic pathways remains elusive. Previously, it was observed that h15-LOX-1 reacted with 5S-HETE in a non-canonical manner, producing primarily the 5S,12S-diHETE product. To determine the active site constraints of h15-LOX-1 in achieving this reactivity, amino acids involved in the fatty acid binding were investigated. It was observed that R402L did not have a large effect on 5S-HETE catalysis, but F414 appeared to π-π stack with 5S-HETE, as seen with AA binding, indicating an aromatic interaction between a double bond of 5S-HETE and F414. Decreasing the size of F352 and I417 shifted oxygenation of 5S-HETE to C12, while increasing the size of these residues reversed the positional specificity of 5S-HETE to C15. Mutants at these locations demonstrated a similar effect with 7S-HDHA as the substrate, indicating that the depth of the active site regulates product specificity for both substrates. Together, these data indicate that of the three regions proposed to control positional specificity, π-π stacking and active site cavity depth are the primary determinants of positional specificity with 5S-HETE and h15-LOX-1. Finally, the altered reactivity of h15-LOX-1 was also observed with 5S-HEPE, producing 5S,12S-diHEPE instead of 5S,15S-diHEPE (aka resolvin E4 (RvE4). However, h15-LOX-2 efficiently produces 5S,15S-diHEPE from 5S-HEPE. This result is important with respect to the biosynthesis of the RvE4 since it obscures which LOX isozyme is involved in its biosynthesis. Future work detailing the expression levels of the lipoxygenase isoforms in immune cells and selective inhibition during the inflammatory response will be required for a comprehensive understanding of RvE4 biosynthesis.


Assuntos
Araquidonato 15-Lipoxigenase , Ácidos Docosa-Hexaenoicos , Lipoxigenase , Humanos , Araquidonato 12-Lipoxigenase/genética , Araquidonato 15-Lipoxigenase/química , Araquidonato 15-Lipoxigenase/genética , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Graxos , Ácidos Hidroxieicosatetraenoicos/química , Lipoxigenase/genética , Receptores Depuradores Classe E
7.
mBio ; 12(5): e0118121, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34544271

RESUMO

Hepatic failure is an important risk factor for poor outcome in septic patients. Using a chemical tagging workflow and high-resolution mass spectrometry, we demonstrate that rapid proteome remodeling of the vascular surfaces precedes hepatic damage in a murine model of Staphylococcus aureus sepsis. These early changes include vascular deposition of neutrophil-derived proteins, shedding of vascular receptors, and altered levels of heparin/heparan sulfate-binding factors. Modification of endothelial heparan sulfate, a major component of the vascular glycocalyx, diminishes neutrophil trafficking to the liver and reduces hepatic coagulopathy and organ damage during the systemic inflammatory response to infection. Modifying endothelial heparan sulfate likewise reduces neutrophil trafficking in sterile hepatic injury, reflecting a more general role of heparan sulfate contribution to the modulation of leukocyte behavior during inflammation. IMPORTANCE Vascular glycocalyx remodeling is critical to sepsis pathology, but the glycocalyx components that contribute to this process remain poorly characterized. This article shows that during Staphylococcus aureus sepsis, the liver vascular glycocalyx undergoes dramatic changes in protein composition associated with neutrophilic activity and heparin/heparan sulfate binding, all before organ damage is detectable by standard circulating liver damage markers or histology. Targeted manipulation of endothelial heparan sulfate modulates S. aureus sepsis-induced hepatotoxicity by controlling the magnitude of neutrophilic infiltration into the liver in both nonsterile and sterile injury. These data identify an important vascular glycocalyx component that impacts hepatic failure during nonsterile and sterile injury.


Assuntos
Células Endoteliais/metabolismo , Heparitina Sulfato/genética , Heparitina Sulfato/metabolismo , Ativação de Neutrófilo , Neutrófilos/patologia , Sepse/microbiologia , Staphylococcus aureus/imunologia , Animais , Modelos Animais de Doenças , Células Endoteliais/imunologia , Feminino , Glicocálix/metabolismo , Glicocálix/patologia , Fígado/imunologia , Fígado/microbiologia , Fígado/patologia , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Staphylococcus aureus/patogenicidade
8.
Nat Commun ; 12(1): 4988, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404781

RESUMO

Glycans are fundamental cellular building blocks, involved in many organismal functions. Advances in glycomics are elucidating the essential roles of glycans. Still, it remains challenging to properly analyze large glycomics datasets, since the abundance of each glycan is dependent on many other glycans that share many intermediate biosynthetic steps. Furthermore, the overlap of measured glycans can be low across samples. We address these challenges with GlyCompare, a glycomic data analysis approach that accounts for shared biosynthetic steps for all measured glycans to correct for sparsity and non-independence in glycomics, which enables direct comparison of different glycoprofiles and increases statistical power. Using GlyCompare, we study diverse N-glycan profiles from glycoengineered erythropoietin. We obtain biologically meaningful clustering of mutant cell glycoprofiles and identify knockout-specific effects of fucosyltransferase mutants on tetra-antennary structures. We further analyze human milk oligosaccharide profiles and find mother's fucosyltransferase-dependent secretor-status indirectly impact the sialylation. Finally, we apply our method on mucin-type O-glycans, gangliosides, and site-specific compositional glycosylation data to reveal tissues and disease-specific glycan presentations. Our substructure-oriented approach will enable researchers to take full advantage of the growing power and size of glycomics data.


Assuntos
Vias Biossintéticas , Glicômica , Polissacarídeos/biossíntese , Transporte Biológico , Vias Biossintéticas/genética , Análise por Conglomerados , Análise de Dados , Eritropoetina/metabolismo , Fucosiltransferases/genética , Gangliosídeos , Técnicas de Inativação de Genes , Glicosilação , Humanos , Mucinas
9.
J Biomed Sci ; 28(1): 50, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34158025

RESUMO

Cancer immunotherapy has revolutionized treatment and led to an unprecedented wave of immuno-oncology research during the past two decades. In 2018, two pioneer immunotherapy innovators, Tasuku Honjo and James P. Allison, were awarded the Nobel Prize for their landmark cancer immunotherapy work regarding "cancer therapy by inhibition of negative immune regulation" -CTLA4 and PD-1 immune checkpoints. However, the challenge in the coming decade is to develop cancer immunotherapies that can more consistently treat various patients and cancer types. Overcoming this challenge requires a systemic understanding of the underlying interactions between immune cells, tumor cells, and immunotherapeutics. The role of aberrant glycosylation in this process, and how it influences tumor immunity and immunotherapy is beginning to emerge. Herein, we review current knowledge of miRNA-mediated regulatory mechanisms of glycosylation machinery, and how these carbohydrate moieties impact immune cell and tumor cell interactions. We discuss these insights in the context of clinical findings and provide an outlook on modulating the regulation of glycosylation to offer new therapeutic opportunities. Finally, in the coming age of systems glycobiology, we highlight how emerging technologies in systems glycobiology are enabling deeper insights into cancer immuno-oncology, helping identify novel drug targets and key biomarkers of cancer, and facilitating the rational design of glyco-immunotherapies. These hold great promise clinically in the immuno-oncology field.


Assuntos
Biomarcadores , Sistemas de Liberação de Medicamentos/métodos , Glicômica/métodos , Imunoterapia/métodos , MicroRNAs/metabolismo
10.
J Histochem Cytochem ; 69(2): 105-119, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33494649

RESUMO

Heparan sulfate proteoglycans consist of a small family of proteins decorated with one or more covalently attached heparan sulfate glycosaminoglycan chains. These chains have intricate structural patterns based on the position of sulfate groups and uronic acid epimers, which dictate their ability to engage a large repertoire of heparan sulfate-binding proteins, including extracellular matrix proteins, growth factors and morphogens, cytokines and chemokines, apolipoproteins and lipases, adhesion and growth factor receptors, and components of the complement and coagulation system. This review highlights recent progress in the characterization of the so-called "heparan sulfate interactome," with a major focus on systems-wide strategies as a tool for discovery and characterization of this subproteome. In addition, we compiled all heparan sulfate-binding proteins reported in the literature to date and grouped them into a few major functional classes by applying a networking approach.


Assuntos
Proteoglicanas de Heparan Sulfato , Heparitina Sulfato , Animais , Proteoglicanas de Heparan Sulfato/química , Proteoglicanas de Heparan Sulfato/metabolismo , Heparitina Sulfato/química , Heparitina Sulfato/metabolismo , Humanos
11.
Beilstein J Org Chem ; 16: 2645-2662, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33178355

RESUMO

Systems glycobiology aims to provide models and analysis tools that account for the biosynthesis, regulation, and interactions with glycoconjugates. To facilitate these methods, there is a need for a clear glycan representation accessible to both computers and humans. Linear Code, a linearized and readily parsable glycan structure representation, is such a language. For this reason, Linear Code was adapted to represent reaction rules, but the syntax has drifted from its original description to accommodate new and originally unforeseen challenges. Here, we delineate the consensuses and inconsistencies that have arisen through this adaptation. We recommend options for a consensus-based extension of Linear Code that can be used for reaction rule specification going forward. Through this extension and specification of Linear Code to reaction rules, we aim to minimize inconsistent symbology thereby making glycan database queries easier. With a clear guide for generating reaction rule descriptions, glycan synthesis models will be more interoperable and reproducible thereby moving glycoinformatics closer to compliance with FAIR standards. Here, we present Linear Code for Reaction Rules (LiCoRR), version 1.0, an unambiguous representation for describing glycosylation reactions in both literature and code.

12.
bioRxiv ; 2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32839779

RESUMO

The human microbiota has a close relationship with human disease and it remodels components of the glycocalyx including heparan sulfate (HS). Studies of the severe acute respiratory syndrome coronavirus (SARS-CoV-2) spike protein receptor binding domain suggest that infection requires binding to HS and angiotensin converting enzyme 2 (ACE2) in a codependent manner. Here, we show that commensal host bacterial communities can modify HS and thereby modulate SARS-CoV-2 spike protein binding and that these communities change with host age and sex. Common human-associated commensal bacteria whose genomes encode HS-modifying enzymes were identified. The prevalence of these bacteria and the expression of key microbial glycosidases in bronchoalveolar lavage fluid (BALF) was lower in adult COVID-19 patients than in healthy controls. The presence of HS-modifying bacteria decreased with age in two large survey datasets, FINRISK 2002 and American Gut, revealing one possible mechanism for the observed increase in COVID-19 susceptibility with age. In vitro , bacterial glycosidases from unpurified culture media supernatants fully blocked SARS-CoV-2 spike binding to human H1299 protein lung adenocarcinoma cells. HS-modifying bacteria in human microbial communities may regulate viral adhesion, and loss of these commensals could predispose individuals to infection. Understanding the impact of shifts in microbial community composition and bacterial lyases on SARS-CoV-2 infection may lead to new therapeutics and diagnosis of susceptibility.

13.
Curr Res Biotechnol ; 2: 22-36, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32285041

RESUMO

Glycosylated biopharmaceuticals are important in the global pharmaceutical market. Despite the importance of their glycan structures, our limited knowledge of the glycosylation machinery still hinders controllability of this critical quality attribute. To facilitate discovery of glycosyltransferase specificity and predict glycoengineering efforts, here we extend the approach to model N-linked protein glycosylation as a Markov process. Our model leverages putative glycosyltransferase (GT) specificity to define the biosynthetic pathways for all measured glycans, and the Markov chain modelling is used to learn glycosyltransferase isoform activities and predict glycosylation following glycosyltransferase knock-in/knockout. We apply our methodology to four different glycoengineered therapeutics (i.e., Rituximab, erythropoietin, Enbrel, and alpha-1 antitrypsin) produced in CHO cells. Our model accurately predicted N-linked glycosylation following glycoengineering and further quantified the impact of glycosyltransferase mutations on reactions catalyzed by other glycosyltransferases. By applying these learned GT-GT interaction rules identified from single glycosyltransferase mutants, our model further predicts the outcome of multi-gene glycosyltransferase mutations on the diverse biotherapeutics. Thus, this modeling approach enables rational glycoengineering and the elucidation of relationships between glycosyltransferases, thereby facilitating biopharmaceutical research and aiding the broader study of glycosylation to elucidate the genetic basis of complex changes in glycosylation.

14.
Nat Commun ; 10(1): 4656, 2019 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-31604940

RESUMO

Sepsis is a life-threatening condition triggered by a dysregulated host response to microbial infection resulting in vascular dysfunction, organ failure and death. Here we provide a semi-quantitative atlas of the murine vascular cell-surface proteome at the organ level, and how it changes during sepsis. Using in vivo chemical labeling and high-resolution mass spectrometry, we demonstrate the presence of a vascular proteome that is perfusable and shared across multiple organs. This proteome is enriched in membrane-anchored proteins, including multiple regulators of endothelial barrier functions and innate immunity. Further, we automated our workflows and applied them to a murine model of methicillin-resistant Staphylococcus aureus (MRSA) sepsis to unravel changes during systemic inflammatory responses. We provide an organ-specific atlas of both systemic and local changes of the vascular proteome triggered by sepsis. Collectively, the data indicates that MRSA-sepsis triggers extensive proteome remodeling of the vascular cell surfaces, in a tissue-specific manner.


Assuntos
Staphylococcus aureus Resistente à Meticilina/imunologia , Proteoma , Sepse/metabolismo , Infecções Estafilocócicas/complicações , Doenças Vasculares/microbiologia , Animais , Ácido Hialurônico/metabolismo , Fígado/patologia , Camundongos , Camundongos Endogâmicos C57BL , Insuficiência de Múltiplos Órgãos/microbiologia , Proteômica , Infecções Estafilocócicas/imunologia , Doenças Vasculares/metabolismo , Remodelação Vascular
15.
Cephalalgia ; 30(11): 1336-45, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20959428

RESUMO

OBJECTIVE: This study assessed the efficacy of diclofenac potassium for oral solution, a novel water-soluble buffered powder formulation, versus placebo for the acute treatment of migraine. Diclofenac potassium for oral solution has a time to maximum plasma concentration (Tmax) of 15 minutes, suggesting the potential for a rapid onset of therapeutic effects. METHODS: This was a randomized, double-blind, parallel-group, placebo-controlled study conducted in 23 US centers. Adult sufferers with an established migraine diagnosis according to the International Classification of Headache Disorders, second edition (ICHD-II), treated one moderate or severe attack with 50 mg diclofenac potassium for oral solution (dissolved in approximately 2 ounces of water; N=343) or matching placebo (N=347). Four co-primary endpoints included the percentage of subjects who at two hours post-treatment reported no headache pain, no nausea, no photophobia and/or no phonophobia. RESULTS: Significantly more subjects treated with diclofenac potassium for oral solution (N=343) achieved a two-hour pain-free response (25% vs. 10%, p<.001), no nausea (65% vs. 53%; p=.002), no photophobia (41% vs. 27%; p<.001) and no phonophobia (44% vs. 27%; p<.001) compared to placebo. Pain intensity differences between treatments were significantly lower in the diclofenac potassium oral solution group, starting at 30 minutes post-treatment (p=.013) with significant differences at all time points thereafter (p<.001). Twenty-four-hour sustained pain-free response favored diclofenac potassium oral solution treatment versus placebo (19% vs. 7%, p<.0001). The most common adverse event considered to be treatment related was nausea (diclofenac potassium for oral solution [4.6%]; placebo [4.3%]). CONCLUSIONS: This study shows that this formulation of diclofenac potassium for oral solution is effective in reducing pain intensity within 30 minutes, which may be related to the 15-minute T(max) associated with this formulation. The rapid-onset benefits were sustained through 24 hours post-treatment.


Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Diclofenaco/administração & dosagem , Transtornos de Enxaqueca/tratamento farmacológico , Administração Oral , Adolescente , Adulto , Idoso , Anti-Inflamatórios não Esteroides/efeitos adversos , Diclofenaco/efeitos adversos , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pós , Resultado do Tratamento , Adulto Jovem
16.
Headache ; 45(4): 283-92, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15836564

RESUMO

BACKGROUND: More than 50% of migraine sufferers rely on over-the-counter medications for the treatment of migraine. Along with other over-the-counter products, aspirin is considered by the US Headache Consortium to be an option for first-line migraine treatment. This study assessed the efficacy and tolerability of aspirin versus placebo for the acute treatment of a single acute attack of migraine. METHODS: This prospective, randomized, double-blind, parallel-group, placebo-controlled study evaluated the efficacy of a single, 1000-mg dose of aspirin for the treatment of acute moderate to severe migraine, with or without aura. Subjects recorded all study evaluations in a diary at baseline and at .5, 1, 2, 3, 4, 5, 6, and 24 hours after treatment. Pain was rated on a 4-point ordinal scale from no pain to severe pain. The primary efficacy end point was headache response at 2 hours. Secondary efficacy parameters included reduction of nausea, photophobia and phonophobia, pain intensity difference, and headache recurrence at 24 hours. RESULTS: Of 485 subjects enrolled, 409 took study medication and 401 treated a confirmed migraine attack (201 with aspirin and 200 with placebo). Baseline demographic and migraine characteristics were not significantly different between groups. The 2-hour headache response rate was 52% with aspirin versus 34% with placebo (P<.001). Aspirin was significantly more effective than placebo for pain reduction beginning 1 hour after dosing (P<.001) and continuing throughout the 6-hour evaluation period. Significantly (P<.05), more subjects were pain free from the 1-hour evaluation through the 6-hour evaluation. Of the aspirin-treated subjects, 20% were pain free at 2 hours versus only 6% of placebo-treated subjects. At 24 hours, the headache recurrence rate was 21.8% for aspirin (23 of 105 subjects) and 27.7% for placebo (19 of 68 subjects). Only 34% of aspirin-treated subjects needed rescue medication at 24 hours compared with 52% of placebo-treated subjects (P<.001). Aspirin was well tolerated, and adverse events were not significantly different between groups. CONCLUSIONS: This study demonstrates that aspirin is safe and effective for treatment of acute migraine in appropriately selected patients.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Aspirina/uso terapêutico , Transtornos de Enxaqueca/tratamento farmacológico , Doença Aguda , Método Duplo-Cego , Humanos , Estudos Prospectivos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...