Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gels ; 7(4)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34940298

RESUMO

Collagen-based hydrogels are an attractive option in the field of cartilage regeneration with features of high biocompatibility and low immunogenic response. Crosslinking treatments are often employed to create stable 3D gels that can support and facilitate cell embodiment. In this study, we explored the properties of JellaGel™, a novel jellyfish material extracted from Rhizostoma pulmo. In particular, we analyzed the influence of genipin, a natural crosslinker, on the formation of 3D stable JellaGel™ hydrogels embedding human chondrocytes. Three concentrations of genipin were used for this purpose (1 mM, 2.5 mM, and 5 mM). Morphological, thermal, and mechanical properties were investigated for the crosslinked materials. The metabolic activity of embedded chondrocytes was also evaluated at different time points (3, 7, and 14 days). Non-crosslinked hydrogels resulted in an unstable matrix, while genipin-crosslinked hydrogels resulted in a stable matrix, without significant changes in their properties; their collagen network revealed characteristic dimensions in the order of 20 µm, while their denaturation temperature was 57 °C. After 7 and 14 days of culture, chondrocytes showed a significantly higher metabolic activity within the hydrogels crosslinked with 1 mM genipin, compared to those crosslinked with 5 mM genipin.

2.
Sensors (Basel) ; 21(19)2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34641013

RESUMO

The healing process of surgically-stabilised long bone fractures depends on two main factors: (a) the assessment of implant stability, and (b) the knowledge of bone callus stiffness. Currently, X-rays are the main diagnostic tool used for the assessment of bone fractures. However, they are considered unsafe, and the interpretation of the clinical results is highly subjective, depending on the clinician's experience. Hence, there is the need for objective, non-invasive and repeatable methods to allow a longitudinal assessment of implant stability and bone callus stiffness. In this work, we propose a compact and scalable system, based on capacitive sensor technology, able to measure, quantitatively, the relative pins displacements in bone fractures treated with external fixators. The measurement device proved to be easily integrable with the external fixator pins. Smart arrangements of the sensor units were exploited to discriminate relative movements of the external pins in the 3D space with a resolution of 0.5 mm and 0.5°. The proposed capacitive technology was able to detect all of the expected movements of the external pins in the 3D space, providing information on implant stability and bone callus stiffness.


Assuntos
Consolidação da Fratura , Fraturas Ósseas , Fixadores Externos , Fraturas Ósseas/diagnóstico por imagem , Humanos , Radiografia
3.
IEEE Rev Biomed Eng ; 13: 212-232, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31484133

RESUMO

Optical and electromagnetic tracking systems represent the two main technologies integrated into commercially-available surgical navigators for computer-assisted image-guided surgery so far. Optical Tracking Systems (OTSs) work within the optical spectrum to track the position and orientation, i.e., pose of target surgical instruments. OTSs are characterized by high accuracy and robustness to environmental conditions. The main limitation of OTSs is the need of a direct line-of-sight between the optical markers and the camera sensor, rigidly fixed into the operating theatre. Electromagnetic Tracking Systems (EMTSs) use electromagnetic field generator to detect the pose of electromagnetic sensors. EMTSs do not require such a direct line-of-sight, however the presence of metal or ferromagnetic sources in the operating workspace can significantly affect the measurement accuracy. The aim of the proposed review is to provide a complete and detailed overview of optical and electromagnetic tracking systems, including working principles, source of error and validation protocols. Moreover, commercial and research-oriented solutions, as well as clinical applications, are described for both technologies. Finally, a critical comparative analysis of the state of the art which highlights the potentialities and the limitations of each tracking system for a medical use is provided.


Assuntos
Fenômenos Eletromagnéticos , Dispositivos Ópticos , Cirurgia Assistida por Computador/métodos , Desenho de Equipamento , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...