Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 21(6): 065502, 2010 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-20061599

RESUMO

A nanopore is an analytical tool with single molecule sensitivity. For detection, a nanopore relies on the electrical signal that develops when a molecule translocates through it. However, the detection sensitivity can be adversely affected by noise and the frequency response. Here, we report measurements of the frequency and noise performance of nanopores

2.
Solid State Electron ; 52(6): 899-908, 2008 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20706596

RESUMO

We have fabricated and tested the performance of sub-50nm gate nMOSFETs to assess their suitability for mixed signal applications in the super high frequency (SHF) band, i.e. 3-30GHz. For a 30nm×40 µm×2 device, we found f(T) =465GHz at V(ds)=2V, V(g)=0.67V, which is the highest cut-off frequency reported for a MOSFET produced on bulk silicon substrate so far. However, our measurements of f(max) and noise figure indicate that parasitics impose limitations on SHF operation. We also present a high-frequency ac model appropriate to sub-50nm gate length nanotransistors, which incorporates the effects of the parasitics. The model accurately accounts for measurements of the S and Y parameters in the frequency range from 1 to 50GHz.

3.
Bell Labs Tech J ; 10(3): 5-22, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-18815623

RESUMO

We describe a prospective strategy for reading the encyclopedic information encoded in the genome: using a nanopore in a membrane formed from an MOS-capacitor to sense the charge in DNA. In principle, as DNA permeates the capacitor-membrane through the pore, the electrostatic charge distribution characteristic of the molecule should polarize the capacitor and induce a voltage on the electrodes that can be measured. Silicon nanofabrication and molecular dynamic simulations with atomic detail are technological linchpins in the development of this detector. The sub-nanometer precision available through silicon nanotechnology facilitates the fabrication of the detector, and molecular dynamics provides us with a means to design it and analyze the experimental outcomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...