Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38567488

RESUMO

Nitric oxide (NO) is a diatomic inorganic free radical ubiquitous in mammalian tissues and cells that plays a multifaceted role in a variety of physiological and pathophysiological processes. The strict dependence of the biological effects of NO on its concentration makes its real-time monitoring crucial. In view of the reactivity of NO with multiple bio-targets, the development of NO sensors that associate a fast response rate with selectivity and sensitivity is very challenging. Herein we report a fluorescent NO probe based on a BODIPY fluorogenic unit covalently linked to a trimethoxy aniline derivative through a flexible spacer. NO leads to effective nitrosation of the highly electron-rich amino active site of the probe through the secondary oxide N2O3, resulting in an increase of BODIPY fluorescence quantum yield from Φf = 0.06 to Φf = 0.55, accompanied by significant changes in the relative amplitude of the fluorescence lifetimes. In situ generation of NO, achieved by a tailored light-activatable NO releaser, allows the real-time detection of NO as a function of its concentration and permits demonstrating that the probe exhibits a very fast response time, being ≤0.1 s. This remarkable data combines with the high sensitivity of the probe to NO (LOD = 35 nM), responsiveness also to ONOO-, the other important secondary oxide of NO, independence from the fluorescence response within a wide pH range, good selectivity towards different analytes and small interference by typical physiological concentrations of glutathione. Validation of this probe in melanoma cell lines is also reported.

2.
ACS Appl Polym Mater ; 5(10): 7918-7926, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37854303

RESUMO

The achievement of biocompatible platforms for multimodal therapies is one of the major challenges in the burgeoning field of nanomedicine. Here, we report on a mixed ß- and γ-cyclodextrin-based branched polymeric material (ßγCD-NOPD) covalently integrating a nitric oxide (NO) photodonor (NOPD) within its macromolecular scaffold, and its supramolecular ensemble with a singlet oxygen (1O2) photosensitizer (PS) Zn(II) phthalocyanine (ZnPc) and the chemodrug Lenvatinib (LVB). This polymer is highly water-soluble and generates NO under visible blue light stimuli with an efficiency of more than 1 order of magnitude higher than that of the single NOPD. The PS, which in an aqueous solution is aggregated and non-photoresponsive, can be entangled in the polymeric network as a photoresponsive monomeric species. In addition, the poorly water-soluble LVB can be co-encapsulated within the polymeric host, which increases the drug solubility by more than 30-fold compared to the free drug and more than 2-fold compared with a similar branched polymer containing only ßCD units. The supramolecular nanoensemble, ca. 15 nm in diameter, retains well the photochemical properties of both the NOPD and PS, which can operate in parallel under light stimuli of different energies. Irradiation with blue and red light results in the photogeneration of NO and 1O2 associated with red fluorescence emission, without inducing any photodegradation of LVB. This result is not trivial and is due to the absence of significant, mutual interactions between the NOPD, the PS and LVB both in the ground and excited states, despite these components are confined in the same host. The proposed polymeric nanoplatform may represent a potential trimodal nanomedicine for biomedical research studies, since it combines the double photodynamic action of NO and 1O2, two species that do not suffer multidrug resistance, with the therapeutic activity of a conventional chemodrug.

3.
Molecules ; 28(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37570634

RESUMO

Developing biocompatible nitric oxide (NO) photoreleasing nanoconstucts is of great interest in view of the large variety of biological roles that NO plays and the unique advantage light offers in controlling NO release in space and time. In this contribution, we report the supramolecular assemblies of two NO photodonors (NOPDs), NBF-NO and RHD-NO, as water-dispersible nanogels, ca. 10 nm in diameter, based on γ-cyclodextrins (γ-CDng). These NOPDs, containing amino-nitro-benzofurazan and rhodamine chromophores as light harvesting antennae, can be activated by visible light, are highly hydrophobic and can be effectively entrapped within the γ-CDng. Despite being confined in a very restricted environment, neither NOPD suffer self-aggregation and preserve their photochemical and photophysical properties well. The blue light excitation of the weakly fluorescent γ-CDng/NBF-NO complex results in effective NO release and the concomitant generation of the highly green, fluorescent co-product, which acts as an optical NO reporter. Moreover, the green light excitation of the persistent red fluorescent γ-CDng/RHD-NO triggers NO photorelease without significantly modifying the emission properties. The activatable and persistent fluorescence emissions of the NOPDs are useful for monitoring their interactions with the Gram-positive methicillin-resistant Staphylococcus aureus, whose growth is significantly inhibited by γ-CDng/RHD-NO upon green light irradiation.


Assuntos
Ciclodextrinas , Staphylococcus aureus Resistente à Meticilina , Óxido Nítrico/química , Nanogéis , Doadores de Óxido Nítrico/farmacologia , Corantes
4.
Biomacromolecules ; 24(8): 3887-3897, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37467426

RESUMO

The role of nitric oxide (NO) as an "unconventional" therapeutic and the strict dependence of biological effects on its concentration require the generation of NO with precise spatiotemporal control. The development of precursors and strategies to activate NO release by excitation in the so-called "therapeutic window" with highly biocompatible and tissue-penetrating red light is desirable and challenging. Herein, we demonstrate that one-photon red-light excitation of Verteporfin, a clinically approved photosensitizer (PS) for photodynamic therapy, activates NO release, in a catalytic fashion, from an otherwise blue-light activatable NO photodonor (NOPD) with an improvement of about 300 nm toward longer and more biocompatible wavelengths. Steady-state and time-resolved spectroscopic and photochemical studies combined with theoretical calculations account for an NO photorelease photosensitized by the lowest triplet state of the PS. In view of biological applications, the water-insoluble PS and NOPD have been co-entrapped within water-dispersible, biodegradable polymeric nanoparticles (NPs) of mPEG-b-PCL (about 84 nm in diameter), where the red-light activation of NO release takes place even more effectively than in an organic solvent solution and almost independently by the presence of oxygen. Moreover, the ideal spectroscopic prerequisites and the restricted environment of the NPs permit the green-fluorescent co-product formed concomitantly to NO photorelease to communicate with the PS via Förster resonance energy transfer. This leads to an enhancement of the typical red emission of the PS offering the possibility of a double color optical reporter useful for the real-time monitoring of the NO release through fluorescence techniques. The suitability of this strategy applied to the polymeric NPs as potential nanotherapeutics was evaluated through biological tests performed by using HepG2 hepatocarcinoma and A375 melanoma cancer cell lines. Fluorescence investigation in cells and cell viability experiments demonstrates the occurrence of the NO release under one-photon red-light illumination also in the biological environment. This confirms that the adopted strategy provides a valuable tool for generating NO from an already available NOPD, otherwise activatable with the poorly biocompatible blue light, without requiring any chemical modification and the use of sophisticated irradiation sources.

5.
J Photochem Photobiol B ; 245: 112756, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37454510

RESUMO

Curcumin (CUR) is a naturally occurring pigment extensively studied due to its therapeutic activity and delivered by suitable nanocarriers to overcome poor solubility in aqueous media. The significant absorption of CUR in the visible blue region has prompted its use as a potential phototherapeutic agent in treating infectious and cancer diseases, although the mechanism underlying the phototoxic effects is still not fully understood. This contribution investigates the photobehaviour of CUR within polymeric micelles, microemulsions, and zein nanoparticles, chosen as biocompatible nanocarriers, and human serum albumin as a representative biomolecule. Spectroscopic studies indicate that in all host systems, the enolic tautomeric form of CUR is converted in a significant amount of the diketo form because of the perturbation of the intramolecular hydrogen bond. This leads to intermolecular H-abstraction from the host components by the lowest excited triplet state of CUR with the formation of the corresponding ketyl radical, detected by nanosecond laser flash photolysis. This radical is oxidized by molecular oxygen, likely generating peroxyl and hydroperoxyl radical species, unless in Zein, reasonably due to the poor availability of oxygen in the closely packed structure of this nanocarrier. In contrast, no detectable formation of singlet oxygen was revealed in all the systems. Overall these results highlight the key role of the H-abstraction process over singlet oxygen sensitization as a primary photochemical pathway strictly dictated by the specific features of the microenvironment, providing new insights into the photoreactivity of CUR in biocompatible hosts that can also be useful for a better understanding of its phototoxicity mechanism.


Assuntos
Curcumina , Zeína , Humanos , Curcumina/química , Fotólise , Oxigênio Singlete , Oxigênio/química
6.
Nanomaterials (Basel) ; 12(24)2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36558329

RESUMO

Au nanostructures exhibiting a localized surface plasmon resonance in the near-infrared spectral window are obtained in a single, green step at room temperature by pomegranate extract in the presence of a highly biocompatible ß-cyclodextrin branched polymer, without the need of preformed seeds, external reducing and sacrificial agents, and conventional surfactants. The polymeric component makes the Au nanostructures dispersible in water, stable for weeks and permits their supramolecular assembling with the chemotherapeutic sorafenib and a nitric oxide (NO) photodonor (NOPD), chosen as representative for chemo- and photo-therapeutics. Irradiation of the plasmonic Au nanostructures in the therapeutic window with 808 nm laser light results in a good photothermal response, which (i) is not affected by the presence of either the chemo- or the phototherapeutic guests and (ii) does not lead to their photoinduced decomposition. Besides, irradiation of the hybrid Au nanoassembly with the highly biocompatible green light results in the NO release from the NOPD with efficiency similar to that observed for the free guest. Preliminary biological experiments against Hep-G2 hepatocarcinoma cell lines are also reported.

7.
Artigo em Inglês | MEDLINE | ID: mdl-35955120

RESUMO

Although climate change poses a threat to health and well-being globally, a regional approach to addressing climate-related health equity may be more suitable, appropriate, and appealing to under-resourced communities and countries. In support of this argument, this commentary describes an approach by a network of researchers, practitioners, and policymakers dedicated to promoting climate-related health equity in Small Island Developing States and low- and middle-income countries in the Pacific. We identify three primary sets of needs related to developing a regional capacity to address physical and mental health disparities through research, training, and assistance in policy and practice implementation: (1) limited healthcare facilities and qualified medical and mental health providers; (2) addressing the social impacts related to the cooccurrence of natural hazards, disease outbreaks, and complex emergencies; and (3) building the response capacity and resilience to climate-related extreme weather events and natural hazards.


Assuntos
Equidade em Saúde , Mudança Climática , Humanos , Renda , Saúde Mental , Políticas
8.
Bioorg Chem ; 128: 106050, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35907377

RESUMO

The design, synthesis, photochemical properties, and biological evaluation of a novel molecular dyad with double photodynamic action and its formulation within biodegradable polymeric nanoparticles (NPs) are reported. A BODIPY-based singlet oxygen (1O2) photosensitizer (PS) and a nitric oxide (NO) photodonor (NOPD) based on an amino-nitro-benzofurazan moiety have been covalently joined in a new molecular dyad, through a flexible alkyl spacer. Excitation of the dyad with visible light in the range 400-570 nm leads to the concomitant generation of the cytotoxic 1O2 and NO with effective quantum yields, being ΦΔ = 0.49 ± 0.05 and ΦNO = 0.18 ± 0.01, respectively. Besides, the non-fluorescent NOPD unit becomes highly fluorescent after the NO release, acting as an optical reporter for the NO photogenerated. The dyad is not soluble in water medium but can be effectively entrapped in water-dispersible, biodegradable polymeric NPs made of mPEG-PCL, ca. 66 nm in diameter. The polymeric nano-environment affects in an opposite way the photochemical performances of the dyad, reducing ΦΔ to 0.16 ± 0.02 and increasing ΦNO to 0.92 ± 0.03, respectively. The NPs effectively deliver the photoactive cargo into the cytoplasm of HepG2 hepatocellular carcinoma cells. A remarkable level of cell mortality is observed for the loaded NPs at very low concentrations of the dyad (1-5 µM) and very low light doses (≤0.8 J cm-2) more likely as the result of the combined photodynamic action of 1O2 and NO.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Linhagem Celular Tumoral , Nanopartículas/química , Óxido Nítrico , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Polímeros/química , Água
9.
Arch Biochem Biophys ; 728: 109354, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35863477

RESUMO

Dipyridamole is currently used as a medication that inhibits blood clot formation and it is also investigated in the context of neurodegenerative and other amyloid related diseases. Here, we propose this molecule as a new diagnostic tool to follow the aggregation properties of three different amyloidogenic proteins tested (insulin, amylin and amyloid ß peptide 1-40). Results show that dipyridamole is sensitive to early stage amyloid formation undetected by thioflavin T, giving a different response for the aggregation of the three different proteins. In addition, we show that dipyridamole is also able to enhance ubiquitin chain growth, paving the way to its potential application as therapeutic agent in neurodegenerative diseases.


Assuntos
Peptídeos beta-Amiloides , Proteínas Amiloidogênicas , Amiloide , Dipiridamol , Polipeptídeo Amiloide das Ilhotas Pancreáticas
10.
ACS Omega ; 7(9): 7452-7459, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35284722

RESUMO

The biological activity of a molecular hybrid (DXNO-GR) joining doxorubicin (DOX) and an N-nitroso moiety releasing nitric oxide (NO) under irradiation with the biocompatible green light has been investigated against DOX-sensitive (MCF7) and -resistant (MDA-MB-231) breast cancer cells in vitro. DXNO-GR shows significantly higher cellular internalization than DOX in both cell lines and, in contrast to DOX, does not experience cell efflux in MDR overexpressing MDA-MB-231 cells. The higher cellular internalization of the DXNO-GR hybrid seems to be mediated by bovine serum albumin (BSA) as a suitable carrier among serum proteins, according to the high binding constant measured for DXNO-GR, which is more than one order of magnitude larger than that reported for DOX. Despite the higher cellular accumulation, DXNO-GR is not toxic in the dark but induces remarkable cell death following photoactivation with green light. This lack of dark toxicity is strictly related to the different cellular compartmentalization of the molecular hybrid that, different from DOX, does not localize in the nucleus but is mainly confined in the Golgi apparatus and endoplasmic reticulum and therefore does not act as a DNA intercalator. The photochemical properties of the hybrid are not affected by binding to BSA as demonstrated by the direct detection of NO photorelease, suggesting that the reduction of cell viability observed under light irradiation is a combined effect of DOX phototoxicity and NO release which, ultimately, inhibits MDR1 efflux pump in DOX-resistant cells.

11.
Molecules ; 27(6)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35335280

RESUMO

In this contribution, we report a strategy to enhance the therapeutic action of the chemotherapeutic Sorafenib (SRB) through its combination with a multifunctional ß-cyclodextrin-based polymer able to deliver nitric oxide (NO) and emit green fluorescence upon visible light excitation (PolyCDNO). The basically water-insoluble SRB is effectively encapsulated in the polymeric host (1 mg mL-1) up to a concentration of 18 µg mL-1. The resulting host-guest supramolecular complex is able to release SRB in sink conditions and to preserve very well the photophysical and photochemical properties of the free PolyCDNO, as demonstrated by the similar values of the NO release and fluorescence emission quantum efficiencies found. The complex PolyCDNO/SRB internalizes in HEP-G2 hepatocarcinoma, MCF-7 breast cancer and ACHN kidney adenocarcinoma cells, localizing in all cases mainly at the cytoplasmic level. Biological experiments have been performed at SRB concentrations below the IC50 and with light doses producing NO at nontoxic concentrations. The results demonstrate exceptional mortality levels for PolyCDNO/SRB upon visible light irradiation in all the different cell lines tested, indicating a clear synergistic action between the chemotherapeutic drug and the NO. These findings can open up exciting avenues to potentiate the anticancer action of SRB and, in principle, to reduce its side effects through its use at low dosages when in combination with the photo-regulated release of NO.


Assuntos
Polímeros , beta-Ciclodextrinas , Celulose , Ciclodextrinas , Óxido Nítrico/metabolismo , Polímeros/química , Sorafenibe/farmacologia , beta-Ciclodextrinas/química
12.
Pharmaceutics ; 15(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36678725

RESUMO

The chemotherapeutic Lenvatinib (LVB) and a nitric oxide (NO) photodonor based on a rhodamine antenna (RD-NO) activatable by the highly compatible green light are supramolecularly assembled by a ß-cyclodextrin branched polymer (PolyCD). The poorly water-soluble LVB and RD-NO solubilize very well within the polymeric host leading to a ternary supramolecular nanoassembly with a diameter of ~55 nm. The efficiency of the NO photorelease and the typical red fluorescence of RD-NO significantly enhance within the polymer due to its active role in the photochemical and photophysical deactivation pathways. The co-presence of LVB within the same host does not affect either the nature or the efficiency of the photoinduced processes of RD-NO. Besides, irradiation of RD-NO does not lead to the decomposition of LVB, ruling out any intermolecular photoinduced process between the two guests despite sharing the same host. Ad-hoc devised Förster Resonance Energy Transfer experiments demonstrate this to be the result of the not close proximity of the two guests, which are confined in different compartments of the same polymeric host. The supramolecular complex is stable in a culture medium, and its biological activity has been evaluated against HEP-G2 hepatocarcinoma cell lines in the dark and under irradiation with visible green light, using LVB at a concentration well below the IC50. Comparative experiments performed using the polymeric host encapsulating the individual LVB and RD-NO components under the same experimental conditions show that the moderate cell mortality induced by the ternary complex in the dark increases significantly upon irradiation with visible green light, more likely as the result of synergism between the NO photogenerated and the chemotherapeutic.

13.
Org Biomol Chem ; 19(29): 6392-6396, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34223590

RESUMO

The incorporation of lipophilic phosphonodithioesters in phospholipid formulations generates clickable liposomes that react with amines. The kinetics of this metal free phosphonodithioester-amine coupling (PAC) on liposomes in water is reported and can be classified as a fast reaction with a second order rate constant of k ≈ 8 × 102 M-1 s-1. The PAC reaction represents a versatile strategy to functionalize liposomes.


Assuntos
Lipossomos
14.
Chemistry ; 27(50): 12714-12725, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34143909

RESUMO

Nitric oxide (NO) plays a multifaceted role in human physiology and pathophysiology, and its controlled delivery has great prospects in therapeutic applications. The light-activated uncaging of NO from NO caging compounds allows this free radical to be released with accurate control of site and dosage, which strictly determine its biological effects. Molecular constructs able to activate fluorescence concomitantly to NO release offer the important advantage of easy and real-time tracking of the amount of NO uncaged in a non-invasive fashion even in the cell environment. This contribution provides an overview of the advances in photoactivatable NO releasers bearing fluorescent reporting functionalities achieved in our and other laboratories, highlighting the rationale design and their potential therapeutic applications.


Assuntos
Corantes , Óxido Nítrico , Fluorescência , Corantes Fluorescentes , Radicais Livres , Humanos
15.
Chem Sci ; 12(13): 4740-4746, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-34163730

RESUMO

The generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) as "unconventional" therapeutics with precise spatiotemporal control by using light stimuli may open entirely new horizons for innovative therapeutic modalities. Among ROS and RNS, peroxynitrite (ONOO-) plays a dominant role in chemistry and biology in view of its potent oxidizing power and cytotoxic action. We have designed and synthesized a molecular hybrid based on benzophenothiazine as a red light-harvesting antenna joined to an N-nitroso appendage through a flexible spacer. Single photon red light excitation of this molecular construct triggers the release of nitric oxide (˙NO) and simultaneously produces superoxide anions (O2˙-). The diffusion-controlled reaction between these two radical species generates ONOO-, as confirmed by the use of fluorescein-boronate as a highly selective chemical probe. Besides, the red fluorescence of the hybrid allows its tracking in different types of cancer cells where it is well-tolerated in the dark but induces remarkable cell mortality under irradiation with red light in a very low concentration range, with very low light doses (ca. 1 J cm-2). This ONOO- generator activatable by highly biocompatible and tissue penetrating single photon red light can open up intriguing prospects in biomedical research, where precise and spatiotemporally controlled concentrations of ONOO- are required.

16.
Mater Sci Eng C Mater Biol Appl ; 119: 111593, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33321637

RESUMO

The aim of this paper is to present and characterize Polyamidoamine-based hydrogels (PAA) as scaffolds to host photoactive Chlorophyll a (Chl a) from Spirulina (Arthrospira platensis) sea-weed Extract (SE), for potential applications in Photodynamic Therapy (PDT). The pigment extracted from SE was blended inside PAA without further purification, according to Green Chemistry principles. A comprehensive investigation of this hybrid platform, PAA/SE-based, was thus performed in our laboratory and, by means of Visible absorption and emission spectroscopies, the Chl a features, stability and photoactivity were studied. The obtained results evidenced the presence of two main Chl a forms, monomeric and dimeric, interacting with hydrogel polyamidoamines network. To better understand the nature of this interaction, the spectroscopic investigation of this system was performed both before and after the solidification of the hydrogel, that occurred at least in 24 h. Then, focusing the attention on solid scaffold, the 1Chl a⁎ fluorescence lifetime and FTIR-ATR analyses of PAA/SE were carried out, confirming the findings. The swelling and Point Zero Charge (PZC) measurements of solid PAA and PAA/SE were additionally performed to investigate the hydrogel behavior in water. Chl a molecules blended in PAA were (photo) stable and photoactive, and this latter feature was demonstrated showing that the pigment induced, when swelled in water and under irradiation, the formation of singlet oxygen (1O2), measured by direct and indirect methods.


Assuntos
Fotoquimioterapia , Spirulina , Clorofila , Clorofila A , Hidrogéis , Extratos Vegetais/farmacologia , Poliaminas
17.
J Mater Chem B ; 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32936201

RESUMO

We report herein the design, preparation, characterization and biological evaluation of a thermoresponsive gel based on binary mixtures of Pluronic® co-polymers F127 and P123, the latter being covalently functionalized with a nitric oxide (NO) photodonor (NOPD). The weight ratio between the two polymeric components is optimized in order to observe gelation of their saline water solution in the range of 32-35 °C, in order to exploit the therapeutic properties of NO for potential ocular applications. Rheological measurements were performed to evaluate the gelation temperature and, hence, to select a co-polymer mixture specifically appropriate for the reference application. Integration of the NOPD into the polymeric scaffold does not affect its rheological and spectroscopic properties, making it a good absorber of visible light both in solution and in the gel phase. Irradiation of the saline solution of the polymeric components with visible light triggers NO release, which occurs with an efficiency of more than one order of magnitude faster than that observed for the isolated NOPD. The polymeric system fully preserves such photobehavior after gelation as demonstrated by the effective NO photorelease from the gel matrix and its diffusion in the supernatant upon illumination. The gel is well-tolerated in both dark and light conditions by corneal cells, while being able to induce growth inhibition towards Staphylococcus aureus under visible light irradiation and has high moduli which can contribute to an adequate retention time within the eyes.

18.
Chem Commun (Camb) ; 56(47): 6332-6335, 2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32435776

RESUMO

We report for the first time a NO photodonor (NOPD) operating with the widely used chemotherapeutic agent doxorubicin (DOX) as the light-harvesting antenna. This permits NO uncaging from an N-nitroso appendage upon selective excitation of DOX with highly biocompatible green light, without precluding its typical red emission. This NOPD effectively binds DNA and photodelivers NO nearby, representing an intriguing candidate for potential multimodal therapeutic applications based on the combination of DOX and NO.


Assuntos
Antineoplásicos/química , Materiais Biocompatíveis/química , Doxorrubicina/química , Luz , Óxido Nítrico/química , Humanos , Estrutura Molecular
19.
Chemistry ; 26(60): 13627-13633, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-32453464

RESUMO

A novel molecular hybrid has been designed and synthesized in which acridine orange (AO) is covalently linked to an N-nitrosoaniline derivative through an alkyl spacer. Photoexcitation of the AO antenna with the highly biocompatible green light results in intense fluorescence emission and triggers NO detachment from the N-nitroso appendage via an intramolecular electron transfer. The presence of the AO moiety encourages the binding with DNA through both external and partially intercalative fashions, depending on the DNA:molecular hybrid molar ratio. Importantly, this dual-mode binding interaction with the biopolymer does not preclude the NO photoreleasing performances of the molecular hybrid, permitting NO to be photogenerated nearby DNA with an efficiency similar to that of the free molecule. These properties make the presented compound an intriguing candidate for fundamental and potential applicative research studies where NO delivery in the DNA proximity precisely regulated by harmless green light is required.


Assuntos
Laranja de Acridina , DNA , Óxido Nítrico , Corantes Fluorescentes , Luz , Nitrosaminas , Processos Fotoquímicos , Espectrometria de Fluorescência
20.
Mol Pharm ; 17(6): 2135-2144, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32286080

RESUMO

We report on tailored lipid-polymer hybrid nanoparticles (NPs) delivering nitric oxide (NO) under the control of visible light as a tool for overcoming doxorubicin (DOX) resistance. The NPs consist of a polymeric core and a coating. They are appropriately designed to entrap DOX in the poly(lactide-co-glycolide) core and a NO photodonor (NOPD) in the phospholipid shell to avoid their mutual interaction both in the ground and excited states. The characteristic red fluorescence of DOX, useful for its tracking in cells, is well preserved upon incorporation within the NPs, even in the copresence of NOPD. The NP scaffold enhances the NO photoreleasing efficiency of the entrapped NOPD when compared with that of the free compound, and the copresence of DOX does not significantly affect such enhanced photochemical performance. Besides, the delivery of DOX and NOPD from NPs is also not mutually influenced. Experiments carried out in M14 DOX-resistant melanoma cells demonstrate that NO release from the multicargo NPs can be finely regulated by excitation with visible light, at a concentration level below the cytotoxic doses but sufficient enough to inhibit the efflux transporters mostly responsible for DOX cellular extrusion. This results in increased cellular retention of DOX with consequent enhancement of its antitumor activity. This approach, in principle, is not dependent on the type of chemotherapeutic used and may pave the way for new treatment modalities based on the photoregulated release of NO to overcome the multidrug resistance phenomenon and improve cancer chemotherapies.


Assuntos
Doxorrubicina/farmacologia , Nanopartículas/química , Óxido Nítrico/química , Polímeros/química , Antibióticos Antineoplásicos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Humanos , Immunoblotting , Microscopia de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...