Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biofilm ; 7: 100178, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38317668

RESUMO

Biofilm formation by the pathobiont Haemophilus influenzae is associated with human nasopharynx colonization, otitis media in children, and chronic respiratory infections in adults suffering from chronic respiratory diseases such as chronic obstructive pulmonary disease (COPD). ß-lactam and quinolone antibiotics are commonly used to treat these infections. However, considering the resistance of biofilm-resident bacteria to antibiotic-mediated killing, the use of antibiotics may be insufficient and require being replaced or complemented with novel strategies. Moreover, unlike the standard minimal inhibitory concentration assay used to assess antibacterial activity against planktonic cells, standardization of methods to evaluate anti-biofilm drug activity is limited. In this work, we detail a panel of protocols for systematic analysis of drug antimicrobial effect on bacterial biofilms, customized to evaluate drug effects against H. influenzae biofilms. Testing of two cinnamaldehyde analogs, (E)-trans-2-nonenal and (E)-3-decen-2-one, demonstrated their effectiveness in both H. influenzae inhibition of biofilm formation and eradication or preformed biofilms. Assay complementarity allowed quantifying the dynamics and extent of the inhibitory effects, also observed for ampicillin resistant clinical strains forming biofilms refractory to this antibiotic. Moreover, cinnamaldehyde analog encapsulation into poly(lactic-co-glycolic acid) (PLGA) polymeric nanoparticles allowed drug vehiculization while maintaining efficacy. Overall, we demonstrate the usefulness of cinnamaldehyde analogs against H. influenzae biofilms, present a test panel that can be easily adapted to a wide range of pathogens and drugs, and highlight the benefits of drug nanoencapsulation towards safe controlled release.

2.
ACS Appl Bio Mater ; 7(1): 131-143, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38079569

RESUMO

Smart materials with controlled stimuli-responsive functions are at the forefront of technological development. In this work, we present a generic strategy that combines simple components, physicochemical responses, and easy fabrication methods to achieve a dual stimuli-responsive system capable of location-specific antimicrobial cargo delivery. The encapsulated system is fabricated by combining a biocompatible inert polymeric matrix of poly(dimethylsiloxane) (PDMS) and a bioactive cargo of saturated fatty acids. We demonstrate the effectiveness of our approach to deliver antimicrobial activity for the model bacteria Escherichia coli. The system responds to two control variables, temperature and pH, delivering two levels of antimicrobial response under distinct combinations of stimuli: one response toward the planktonic media and another response directly at the surface for sessile bacteria. Spatially resolved Raman spectroscopy alongside thermal and structural material analysis reveals that the system not only exhibits ON/OFF states but can also control relocation and targeting of the active cargo toward either the surface or the liquid media, leading to different ON/OFF states for the planktonic and sessile bacteria. The approach proposed herein is technologically simple and scalable, facing low regulatory barriers within the food and healthcare sectors by using approved components and relying on fundamental chemical processes. Our results also provide a proof-of-concept platform for the design and easy fabrication of delivery systems capable of operating as Boolean logic gates, delivering different responses under different environmental conditions.


Assuntos
Produtos Biológicos , Temperatura , Polímeros/química , Escherichia coli , Concentração de Íons de Hidrogênio
3.
Microbiol Spectr ; 11(6): e0099323, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37795992

RESUMO

IMPORTANCE: Genomic diversity of nontypeable H. influenzae strains confers phenotypic heterogeneity. Multiple strains of H. influenzae can be simultaneously isolated from clinical specimens, but we lack detailed information about polyclonal infection dynamics by this pathogen. A long-term barrier to our understanding of this host-pathogen interplay is the lack of genetic tools for strain engineering and differential labeling. Here, we present a novel plasmid toolkit named pTBH (toolbox for Haemophilus), with standardized modules for fluorescent or bioluminescent labeling, adapted to H. influenzae requirements but designed to be versatile so it can be utilized in other bacterial species. We present detailed experimental and quantitative image analysis methods, together with proof-of-principle examples, and show the ample possibilities of 3D microscopy, combined with quantitative image analysis, to model H. influenzae polyclonal infection lifestyles and unravel the co-habitation and co-infection dynamics of this respiratory pathogen.


Assuntos
Infecções por Haemophilus , Haemophilus influenzae , Humanos , Haemophilus influenzae/genética , Sistema Respiratório , Infecções por Haemophilus/microbiologia , Microscopia
4.
iScience ; 26(7): 107164, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37485358

RESUMO

How cells orchestrate their cellular functions remains a crucial question to unravel how they organize in different patterns. We present a framework based on artificial intelligence to advance the understanding of how cell functions are coordinated spatially and temporally in biological systems. It consists of a hybrid physics-based model that integrates both mechanical interactions and cell functions with a data-driven model that regulates the cellular decision-making process through a deep learning algorithm trained on image data metrics. To illustrate our approach, we used data from 3D cultures of murine pancreatic ductal adenocarcinoma cells (PDAC) grown in Matrigel as tumor organoids. Our approach allowed us to find the underlying principles through which cells activate different cell processes to self-organize in different patterns according to the specific microenvironmental conditions. The framework proposed here expands the tools for simulating biological systems at the cellular level, providing a novel perspective to unravel morphogenetic patterns.

5.
Colloids Surf B Biointerfaces ; 227: 113373, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37257303

RESUMO

Prussian blue (PB) is a coordination polymer based on the Fe2+…CN…Fe3+ sequence. It is an FDA-approved drug, intended for oral use at the acidic pH of the stomach and of most of the intestine track. However, based on FDA approval, a huge number of papers proposed the use of PB nanoparticles (PBnp) under "physiological conditions", meaning pH buffered at 7.4 and high saline concentration. While most of these papers report that PBnp are stable at this pH, a small number of papers describes instead PBnp degradation at the same or similar pH values, i.e. in the 7-8 range. Here we give a definitively clear picture: PBnp are intrinsically unstable at pH ≥ 7, degrading with the fast disappearance of their 700 nm absorption band, due to the formation of OH- complexes from the labile Fe3+ centers. However, we show also that the presence of a polymeric coating (PVP) can protect PBnp at pH 7.4 for over 24 h. Moreover, we demonstrate that when "physiological conditions" include serum, a protein corona is rapidly formed on PBnp, efficiently avoiding degradation. We also show that the viability of PBnp-treated EA.hy926, NCI-H1299, and A549 cells is not affected in a wide range of conditions that either prevent or promote PBnp degradation.


Assuntos
Nanopartículas , Nanopartículas/química , Ferrocianetos/química , Concentração de Íons de Hidrogênio
6.
Metallomics ; 14(12)2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36367500

RESUMO

This paper discusses the feasibility of a novel strategy based on the combination of bioprinting nano-doping technology and laser ablation-inductively coupled plasma time-of-flight mass spectrometry analysis for the preparation and characterization of gelatin-based multi-element calibration standards suitable for quantitative imaging. To achieve this, lanthanide up-conversion nanoparticles were added to a gelatin matrix to produce the bioprinted calibration standards. The features of this bioprinting approach were compared with manual cryosectioning standard preparation, in terms of throughput, between batch repeatability and elemental signal homogeneity at 5 µm spatial resolution. By using bioprinting, the between batch variability for three independent standards of the same concentration of 89Y (range 0-600 mg/kg) was reduced to 5% compared to up to 27% for cryosectioning. On this basis, the relative standard deviation (RSD) obtained between three independent calibration slopes measured within 1 day also reduced from 16% (using cryosectioning) to 5% (using bioprinting), supporting the use of a single standard preparation replicate for each of the concentrations to achieve good calibration performance using bioprinting. This helped reduce the analysis time by approximately 3-fold. With cryosectioning each standard was prepared and sectioned individually, whereas using bio-printing it was possible to have up to six different standards printed simultaneously, reducing the preparation time from approximately 2 h to under 20 min (by approximately 6-fold). The bio-printed calibration standards were found stable for a period of 2 months when stored at ambient temperature and in the dark.


Assuntos
Bioimpressão , Espectrometria de Massas , Padrões de Referência , Nanopartículas , Calibragem
7.
Nanomaterials (Basel) ; 12(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35215010

RESUMO

Surface engineering is a promising strategy to limit or prevent the formation of biofilms. The use of topographic cues to influence early stages of biofilm formationn has been explored, yet many fundamental questions remain unanswered. In this work, we develop a topological model supported by direct experimental evidence, which is able to explain the effect of local topography on the fate of bacterial micro-colonies of Staphylococcus spp. We demonstrate how topological memory at the single-cell level, characteristic of this genus of Gram-positive bacteria, can be exploited to influence the architecture of micro-colonies and the average number of surface anchoring points over nano-patterned surfaces, formed by vertically aligned silicon nanowire arrays that can be reliably produced on a commercial scale, providing an excellent platform to investigate the effect of topography on the early stages of Staphylococcus spp. colonisation. The surfaces are not intrinsically antimicrobial, yet they delivered a topography-based bacteriostatic effect and a significant disruption of the local morphology of micro-colonies at the surface. The insights from this work could open new avenues towards designed technologies for biofilm engineering and prevention, based on surface topography.

8.
Nanomaterials (Basel) ; 11(6)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208469

RESUMO

The generation of hydrogen from water using light is currently one of the most promising alternative energy sources for humankind but faces significant barriers for large-scale applications due to the low efficiency of existing photo-catalysts. In this work we propose a new route to fabricate nano-hybrid materials able to deliver enhanced photo-catalytic hydrogen evolution, combining within the same nanostructure, a plasmonic antenna nanoparticle and semiconductor quantum dots (QDs). For each stage of our fabrication process we probed the chemical composition of the materials with nanometric spatial resolution, allowing us to demonstrate that the final product is composed of a silver nanoparticle (AgNP) plasmonic core, surrounded by satellite Pt decorated CdS QDs (CdS@Pt), separated by a spacer layer of SiO2 with well-controlled thickness. This new type of photoactive nanomaterial is capable of generating hydrogen when irradiated with visible light, displaying efficiencies 300% higher than the constituting photo-active components. This work may open new avenues for the development of cleaner and more efficient energy sources based on photo-activated hydrogen generation.

9.
Nanoscale Adv ; 3(11): 3136-3144, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-34124578

RESUMO

Selective unidirectional transport of barium ions between droplets in a water-in-chloroform emulsion is demonstrated. Gold nanoparticles (GNPs) modified with a thiolated crown ether act as barium ion complexing shuttles that carry the ions from one population of droplets (source) to another (target). This process is driven by a steep barium ion concentration gradient between source and target droplets. The concentration of barium ions in the target droplets is kept low at all times by the precipitation of insoluble barium sulfate. A potential role of electrostatically coupled secondary processes that maintain the electroneutrality of the emulsion droplets is discussed. Charging of the GNP metal cores by electron transfer in the presence of the Fe(ii)/Fe(iii) redox couple appears to affect the partitioning of the GNPs between the water droplets and the chloroform phase. Processes have been monitored and studied by optical microscopy, Raman spectroscopy, cryogenic scanning electron microscopy (cryo-SEM) and zeta potential. The shuttle action of the GNPs has further been demonstrated electrochemically in a model system.

10.
NPJ Biofilms Microbiomes ; 7(1): 51, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34155220

RESUMO

In this work, we introduce a one-step strategy that is suitable for continuous flow manufacturing of antimicrobial PDMS materials. The process is based on the intrinsic capacity of PDMS to react to certain organic solvents, which enables the incorporation of antimicrobial actives such as salicylic acid (SA), which has been approved for use in humans within pharmaceutical products. By combining different spectroscopic and imaging techniques, we show that the surface properties of PDMS remain unaffected while high doses of the SA are loaded inside the PDMS matrix. The SA can be subsequently released under physiological conditions, delivering a strong antibacterial activity. Furthermore, encapsulation of SA inside the PDMS matrix ensured a diffusion-controlled release that was tracked by spatially resolved Raman spectroscopy, Attenuated Total Reflectance IR (ATR-IR), and UV-Vis spectroscopy. The biological activity of the new material was evaluated directly at the surface and in the planktonic state against model pathogenic bacteria, combining confocal laser scanning microscopy, electron microscopy, and cell viability assays. The results showed complete planktonic inhibition for clinically relevant strains of Staphylococcus aureus and Escherichia coli, and a reduction of up to 4 orders of magnitude for viable sessile cells, demonstrating the efficacy of these surfaces in preventing the initial stages of biofilm formation. Our approach adds a new option to existing strategies for the antimicrobial functionalisation of a wide range of products such as catheters, wound dressings and in-dwelling medical devices based on PDMS.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Dimetilpolisiloxanos , Nylons , Ácido Salicílico , Silicones , Antibacterianos/síntese química , Técnicas de Química Sintética , Dimetilpolisiloxanos/química , Liberação Controlada de Fármacos , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Nylons/química , Ácido Salicílico/química , Silicones/química , Análise Espectral , Propriedades de Superfície
11.
ACS Appl Bio Mater ; 2(11): 4801-4811, 2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-35021480

RESUMO

Smart antimicrobial surfaces are a powerful tool to prevent bacterial colonization at surfaces. In this work, we report a successful strategy for the functionalization of polydimethylsiloxane (PDMS) surfaces, widely used in medical devices, with salicylic acid (SA), a biocide approved for use in humans. Antimicrobial PDMS surfaces were fabricated via a rational design in which bifunctional silane linker molecules were covalently grafted onto the PDMS via one end, while soft intermolecular interactions with SA were generated at the other end to enable reversible load and release of the biocide. A molecular level understanding of the interface was obtained using attenuated total reflectance Fourier transform infrared, Raman, and X-ray photoelectron spectroscopies, alongside density functional theory calculations. These reveal that the linker molecules dock the SA molecules at the surface via a 1:1 complexation interaction. Furthermore, each 1:1 complex acts as a nucleation point onto which multiple stacks of the biocide are subsequently stabilized via a combination of H-bonding and π-π stacking interactions, thus significantly enhancing SA uptake at the interface. The antimicrobial activity of these surfaces against model Gram-negative and Gram-positive bacteria represented by Escherichia coli, Staphylococcus aureus, and Staphylococcus epidermidis is demonstrated by a log 6 reduction of planktonic bacterial populations and an efficient anti-biofilm activity at the surface.

12.
ACS Appl Bio Mater ; 1(5): 1294-1300, 2018 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34996233

RESUMO

Soft substrates decorated with micropillar arrays are known to be sensitive to deflection due to capillary action. In this work, we demonstrate that micropillared epoxy surfaces are sensitive to single drops of bacterial suspensions. The micropillars can show significant deformations upon evaporation, just as capillary action does in soft substrates. The phenomenon has been studied with five bacterial strains: S. epidermidis, L. sakei, P. aeruginosa, E. coli, and B. subtilis. The results reveal that only droplets containing motile microbes with flagella stimulate micropillar bending, which leads to significant distortions and pillar aggregations forming dimers, trimers, and higher order clusters. Such deformation is manifested in characteristic patterns that are left on the microarrayed surface following evaporation and can be easily identified even by the naked eye. Our findings could lay the ground for the design and fabrication of mechanically responsive substrates, sensitive to specific types of microorganisms.

13.
ACS Appl Mater Interfaces ; 9(44): 38364-38372, 2017 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-29022348

RESUMO

Application of mesoporous silica nanoparticles (MSNs) as antifouling/antibacterial carriers is limited and specifically with a dual synergetic effect. In the present work, MSNs modified with quaternary ammonium salts (QASs) and loaded with the biocide Parmetol S15 were synthesized as functional fillers for antifouling/antibacterial coatings. From the family of the MSNs, MCM-48 was selected as a carrier because of its cubic pore structure, high surface area, and high specific pore volume. The QASs used for the surface modification of MCM-48 were dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride and dimethyltetradecyl[3-(triethoxysilyl)propyl]ammonium chloride. The QAS-modified MCM-48 reveals strong covalent bonds between the QAS and the surface of the nanoparticles. The surface functionalization was confirmed by Fourier transform infrared spectroscopy, thermogravimetric analysis, elemental analysis, and ζ-potential measurements. Additional loading of the QAS-modified MCM-48 with a commercially available biocide (Parmetol S15) resulted in a synergetic dual antibacterial/antifouling effect. Either loaded or unloaded QAS-modified MSNs exhibited high antibacterial performance confirming their dual activity. The QAS-modified MCM-48 loaded with the biocide Parmetol S15 killed all exposed bacteria after 3 h of incubation and presented 100% reduction at the antibacterial tests against Gram-negative and Gram-positive bacteria. Furthermore, the QAS-modified MCM-48 without Parmetol S15 presented 77-89% reduction against the exposed Gram-negative bacteria and 78-94% reduction against the exposed Gram-positive bacteria. In addition, the modified MCM-48 was mixed with coating formulations, and its antifouling performance was assessed in a field test trial in northern Red Sea. All synthesized paints presented significant antifouling properties after 5 months of exposure in real seawater conditions, and the dual antifouling effect of the nanoparticles was confirmed.


Assuntos
Nanopartículas , Antibacterianos , Bactérias Gram-Negativas , Compostos de Amônio Quaternário , Dióxido de Silício
14.
Sci Rep ; 7(1): 5259, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28701753

RESUMO

Photo-responsive antibacterial surfaces combining both on-demand photo-switchable activity and sustained biocidal release were prepared using sequential chemical grafting of nano-objects with different geometries and functions. The multi-layered coating developed incorporates a monolayer of near-infrared active silica-coated gold nanostars (GNS) decorated by silver nanoparticles (AgNP). This modular approach also enables us to unravel static and photo-activated contributions to the overall antibacterial performance of the surfaces, demonstrating a remarkable synergy between these two mechanisms. Complementary microbiological and imaging evaluations on both planktonic and surface-attached bacteria provided new insights on these distinct but cooperative effects.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/química , Lasers , Nanopartículas Metálicas/química , Bactérias/efeitos da radiação , Ouro/química , Dióxido de Silício/química , Prata/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...