Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(33): e2206513119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35939666

RESUMO

Nucleosome DNA unwrapping and its disassembly into hexasomes and tetrasomes is necessary for genomic access and plays an important role in transcription regulation. Previous single-molecule mechanical nucleosome unwrapping revealed a low- and a high-force transitions, and force-FRET pulling experiments showed that DNA unwrapping is asymmetric, occurring always first from one side before the other. However, the assignment of DNA segments involved in these transitions remains controversial. Here, using high-resolution optical tweezers with simultaneous single-molecule FRET detection, we show that the low-force transition corresponds to the undoing of the outer wrap of one side of the nucleosome (∼27 bp), a process that can occur either cooperatively or noncooperatively, whereas the high-force transition corresponds to the simultaneous unwrapping of ∼76 bp from both sides. This process may give rise stochastically to the disassembly of nucleosomes into hexasomes and tetrasomes whose unwrapping/rewrapping trajectories we establish. In contrast, nucleosome rewrapping does not exhibit asymmetry. To rationalize all previous nucleosome unwrapping experiments, it is necessary to invoke that mechanical unwrapping involves two nucleosome reorientations: one that contributes to the change in extension at the low-force transition and another that coincides but does not contribute to the high-force transition.


Assuntos
DNA , Nucleossomos , Imagem Individual de Molécula , Animais , DNA/química , Transferência Ressonante de Energia de Fluorescência , Nucleossomos/química , Pinças Ópticas , Imagem Individual de Molécula/métodos , Xenopus laevis
2.
Proc Natl Acad Sci U S A ; 116(35): 17169-17174, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31413203

RESUMO

Hydrophobic base stacking is a major contributor to DNA double-helix stability. We report the discovery of specific unstacking effects in certain semihydrophobic environments. Water-miscible ethylene glycol ethers are found to modify structure, dynamics, and reactivity of DNA by mechanisms possibly related to a biologically relevant hydrophobic catalysis. Spectroscopic data and optical tweezers experiments show that base-stacking energies are reduced while base-pair hydrogen bonds are strengthened. We propose that a modulated chemical potential of water can promote "longitudinal breathing" and the formation of unstacked holes while base unpairing is suppressed. Flow linear dichroism in 20% diglyme indicates a 20 to 30% decrease in persistence length of DNA, supported by an increased flexibility in single-molecule nanochannel experiments in poly(ethylene glycol). A limited (3 to 6%) hyperchromicity but unaffected circular dichroism is consistent with transient unstacking events while maintaining an overall average B-DNA conformation. Further information about unstacking dynamics is obtained from the binding kinetics of large thread-intercalating ruthenium complexes, indicating that the hydrophobic effect provides a 10 to 100 times increased DNA unstacking frequency and an "open hole" population on the order of 10-2 compared to 10-4 in normal aqueous solution. Spontaneous DNA strand exchange catalyzed by poly(ethylene glycol) makes us propose that hydrophobic residues in the L2 loop of recombination enzymes RecA and Rad51 may assist gene recombination via modulation of water activity near the DNA helix by hydrophobic interactions, in the manner described here. We speculate that such hydrophobic interactions may have catalytic roles also in other biological contexts, such as in polymerases.


Assuntos
DNA de Forma B/química , Polietilenoglicóis/química , Rutênio/química , Catálise , Pinças Ópticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...