Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Hematol Rep ; 16(1): 140-150, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38534885

RESUMO

BACKGROUND: Second- and third-generation tyrosine kinase inhibitors (TKIs) are now available to treat chronic-phase chronic myeloid leukemia (CP-CML) in the first and second line. However, vascular adverse events (VAEs) have been reported for patients with CML treated with some TKIs. METHODS: We retrospectively evaluated the cumulative incidence (CI) and cardiovascular risk for 210 patients included in the Canarian Registry of CML. RESULT: With a mean follow up of 6 years, 19/210 (9.1%) patients developed VAEs, all of whom presented at least one cardiovascular risk factor at diagnosis. The mean time to VAE presentation was 54 months from the start of TKI treatment. We found a statistically significant difference between the CI for nilotinib-naïve vs. nilotinib-treated patients (p = 0.005), between dasatinib-naïve and dasatinib-treated patients (p = 0.039), and for patients who received three lines of treatment with first-line imatinib vs. first-line imatinib (p < 0.001). From the multivariable logistic regression analyses, the Framingham risk score (FRS) and patients with three lines of TKI with first-line imatinib were the only variables with statistically significant hazard ratios for VAE development. Significant increases in HDL-C and total cholesterol may also be predictive for VAE. CONCLUSIONS: In conclusion, it is important to estimate the cardiovascular risk at the diagnosis of CML as it can help determine whether a patient is likely to develop a VAE during TKI treatment.

2.
BMJ Case Rep ; 16(12)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38061853

RESUMO

Evaluation of rapidly progressive dementia (RPD) is usually challenging. In most cases, patients progress to dementia in weeks to months, and the differential diagnosis is broad. In this case, a woman in her 60s presented with a 1-month history of episodic vertigo, cognitive decline, ataxia and myoclonus. Cerebrospinal fluid total tau was markedly elevated, which was helpful in establishing the diagnosis and discussing prognosis/end-of-life measures with the patient's family. This case summarises a stepwise diagnostic approach for patients with RPD and highlights recent literature on biomarkers of Creutzfeldt-Jakob disease and autoimmune encephalitis.


Assuntos
Disfunção Cognitiva , Síndrome de Creutzfeldt-Jakob , Encefalite , Mioclonia , Feminino , Humanos , Síndrome de Creutzfeldt-Jakob/diagnóstico , Síndrome de Creutzfeldt-Jakob/líquido cefalorraquidiano , Encefalite/diagnóstico , Mioclonia/diagnóstico , Biomarcadores/líquido cefalorraquidiano , Disfunção Cognitiva/diagnóstico , Diagnóstico Diferencial
3.
Cancers (Basel) ; 15(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37444494

RESUMO

For chronic myeloid leukemia (CML) patients with a known risk of cardiovascular events (CVE), imatinib is often recommended for first-line tyrosine kinase inhibitor (TKI) treatment rather than a second-generation TKI (2G-TKI) such as nilotinib or dasatinib. To date, very few studies have evaluated the genetic predisposition associated with CVE development on TKI treatment. In this retrospective study of 102 CML patients, 26 CVEs were reported during an average follow-up of over 10 years. Next-generation sequencing identified pathogenic/likely pathogenic mutations in genes associated with myeloid malignancies in 24.5% of the diagnostic samples analyzed. Patients with a recorded CVE had more myeloid mutations (0.48 vs. 0.14, p = 0.019) and were older (65.1 vs. 55.7 years, p = 0.016). Age ≥ 60 years and receiving a 2G-TKI in first-line were CVE risk factors. The presence of a pathogenic somatic myeloid mutation was an independent risk factor for CVE on any TKI (HR 2.79, p = 0.01), and significantly shortened the CV event-free survival of patients who received first-line imatinib (by 70 months, p = 0.011). Indeed, 62% of patients on imatinib with mutations had a CVE vs. the 19% on imatinib with a mutation and no CVE. In conclusion, myeloid mutations detectable at diagnosis increase CVE risk, particularly for patients on imatinib, and might be considered for first-line TKI choice.

4.
Environ Sci Ecotechnol ; 16: 100261, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37089695

RESUMO

The industrial adoption of microbial electrosynthesis (MES) is hindered by high overpotentials deriving from low electrolyte conductivity and inefficient cell designs. In this study, a mixed microbial consortium originating from an anaerobic digester operated under saline conditions (∼13 g L-1 NaCl) was adapted for acetate production from bicarbonate in galvanostatic (0.25 mA cm-2) H-type cells at 5, 10, 15, or 20 g L-1 NaCl concentration. The acetogenic communities were successfully enriched only at 5 and 10 g L-1 NaCl, revealing an inhibitory threshold of about 6 g L-1 Na+. The enriched planktonic communities were then used as inoculum for 3D printed, three-chamber cells equipped with a gas diffusion biocathode. The cells were fed with CO2 gas and operated galvanostatically (0.25 or 1.00 mA cm-2). The highest production rate of 55.4 g m-2 d-1 (0.89 g L-1 d-1), with 82.4% Coulombic efficiency, was obtained at 5 g L-1 NaCl concentration and 1 mA cm-2 applied current, achieving an average acetate production of 44.7 kg MWh-1. Scanning electron microscopy and 16S rRNA sequencing analysis confirmed the formation of a cathodic biofilm dominated by Acetobacterium sp. Finally, three 3D printed cells were hydraulically connected in series to simulate an MES stack, achieving three-fold production rates than with the single cell at 0.25 mA cm-2. This confirms that three-chamber MES cells are an efficient and scalable technology for CO2 bio-electro recycling to acetate and that moderate saline conditions (5 g L-1 NaCl) can help reduce their power demand while preserving the activity of acetogens.

5.
Membranes (Basel) ; 13(1)2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36676863

RESUMO

Increase water usage has led to its deterioration. Pollutants are easily found in the aquatic environment and treatment techniques must keep improving to meet the current needs and future demands. Membranes are attractive for water treatment, but limitations like fouling and the highly concentrate produced affect their performance. Combining membrane filtration with photocatalysis provides the opportunity to integrate a self-cleaning step during membrane filtration. In this work, we studied two simple and efficient approaches to combine membrane filtration with zinc oxide nanoparticles (using the catalyst in suspension and immobilized) activated by light emitting diodes (LED) emitting light at 365 nm. Both systems were used to test the disinfection efficiency in real surface water, compared in terms of catalyst concentration in the permeate stream (below the limit of detection) and its recovery after filtration (higher that 74%). The system's capability to retain and inactivate target bacteria (total coliforms and E. coli) in the retentate stream was tested with samples of real surface water. The results obtained show that both configurations led to an improved performance in comparison to the membrane treatment alone with a higher retention of the bacteria (not detected in the permeate samples) and higher treatment of the retentate. For the modified membranes, different catalyst concentrations and thermal treatments were tested. The performance of all the processes was evaluated in terms of the level of treatment achieved and the permeate flux. All the modified membranes showed an efficient retention of the target bacteria from surface water, with higher performances than the unmodified membrane (96.2% for total coliforms and 94.9% for E. coli). Remarkable retention and treatment of the retentate was achieved using a membrane modified with a catalyst load of 125 mg subject during two hours to a thermal treatment of 300 °C. This modification has a performance comparable to the system with the same catalyst load in suspension. During operation, the permeate flux reduction is lower with the modified membranes which could lead to longer operation times without the need of further cleaning or replacement. The combined system, ceramic membranes modified with zinc oxide and UV-A LEDs proved to be effective to retain and disinfect water quality indicator bacteria present in real surface water matrices.

6.
J Cancer ; 13(4): 1356-1362, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281876

RESUMO

Recent advances in sequencing technologies and genomics have led to the development of several targeted therapies such as BCL2 and Bromodomain and extra-terminal (BET) protein inhibitors for a more personalized treatment of patients with acute myeloid leukemia (AML), yet the majority of patients still receive standard induction chemotherapy. The molecular profiles of patients who are likely to respond to induction therapy and novel directed therapies remain to be determined. The expression of AML-related genes that are targeted by novel therapies such as BCL2 and BRD4, as well as functionally related genes and associated epigenetic modulators (TET2, EZH2, ASXL1, MYC) were analyzed in a series of 176 consecutive AML patients at multiple points during the disease course - diagnosis (Dx), post-induction (PI), complete remission (CR) and relapse (RL) - and their relationship with clinical variables and outcome investigated. Higher TET2 expression was observed PI and at CR compared to Dx, with significantly superior TET2 expression after induction therapy in the group of patients who reached CR compared to those who did not. Thus, the upregulation of TET2 at PI may be a marker of CR in AML patients. On the other hand, cells with high levels of MYC and BCL2 may be vulnerable to BRD4 inhibition.

8.
Cell Rep Med ; 2(8): 100359, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34308389

RESUMO

Massive vaccination offers great promise for halting the global COVID-19 pandemic. However, the limited supply and uneven vaccine distribution create an urgent need to optimize vaccination strategies. We evaluate SARS-CoV-2-specific antibody responses after Sputnik V vaccination of healthcare workers in Argentina, measuring IgG anti-spike titers and neutralizing capacity after one and two doses in a cohort of naive or previously infected volunteers. By 21 days after receiving the first dose of the vaccine, 94% of naive participants develop spike-specific IgG antibodies. A single Sputnik V dose elicits higher antibody levels and virus-neutralizing capacity in previously infected individuals than in naive ones receiving the full two-dose schedule. The high seroconversion rate after a single dose in naive participants suggests a benefit of delaying administration of the second dose to increase the number of people vaccinated. The data presented provide information for guiding public health decisions in light of the current global health emergency.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Vacinas Sintéticas/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Argentina/epidemiologia , COVID-19/imunologia , Chlorocebus aethiops , Células HEK293 , Pessoal de Saúde , Humanos , Pandemias , SARS-CoV-2/patogenicidade , Soroconversão , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinação , Vacinas , Células Vero
9.
Diagnostics (Basel) ; 10(12)2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33291851

RESUMO

Advances in acute myeloid leukemia (AML) genomics and targeted therapies include the recently approved BCL2 inhibitor venetoclax. The association between BCL2 expression and patient outcome was analyzed in a series of 176 consecutive AML patients at diagnosis (Dx), post-induction (PI), complete remission (CR) and relapse (RL). Levels increased significantly at relapse (mean 1.07 PI/0.96 CR vs. 2.17 RL, p = 0.05/p = 0.03). In multivariate analysis, high BCL2-Dx were marginally associated with worse progression-free survival, while high PI levels or at CR had an independent negative impact on outcome (PI: HR 1.58, p = 0.014; CR: HR 1.96, p = 0.008). This behavior of high PI or CR BCL2 levels and increased risk was maintained in a homogeneous patient subgroup of age <70 and intermediate cytogenetic risk (PI: HR 2.44, p = 0.037; CR: HR 2.71, p = 0.049). Finally, for this subgroup, high BCL2 at relapse indicated worse overall survival (OS, HR 1.15, p = 0.05). In conclusion, high BCL2 levels PI or at CR had an independent negative impact on patient outcome. Therefore, BCL2 expression is a dynamic marker that may be useful during AML patient follow up, and BCL2 levels at PI and/or CR may influence response to anti-BCL2 therapy.

10.
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1390223

RESUMO

RESUMEN Introducción: la fragilidad es un deterioro progresivo de los sistemas fisiológicos, relacionado con la edad, que disminuye las reservas de capacidad intrínseca, lo que confiere mayor vulnerabilidad a factores de estrés. Si bien tiende a empeorar espontáneamente, con intervenciones adecuadas y precoces se pueden revertir, enlentecer o aminorar sus consecuencias. Objetivos: determinar la frecuencia de fragilidad del adulto mayor según los criterios de Fried en tres Unidades de Salud Familiar de Areguá, Paraguay, en 2019. Metodología: estudio observacional, descriptivo, prospectivo, multicéntrico. Se incluyeron varones y mujeres ≥60 años asistidos en las Unidades de Salud Familiar de Yuquyty, Costa Fleytas y Caacupemí (Areguá, Paraguay) en 2019. Se midieron variables antropométricas y clínicas. La fragilidad se determinó con el cuestionario de Fried, previo consentimiento informado. Resultados: se incluyeron 81 sujetos, con edad media 71±7 años, con predominio del sexo femenino (65%). Las comorbilidades más frecuentes fueron la hipertensión arterial, artropatías y diabetes mellitus. La depresión fue autorreportada en 9,8%. Se detectó fragilidad en 53%. El déficit más frecuente de los criterios de Fried fue la lentitud en la marcha. El factor de riesgo asociado a la fragilidad fue el sexo femenino (p 0,006). Conclusiones: la fragilidad se detectó en 53%, con predominio en el sexo femenino.


ABSTRACT Introduction: Frailty is a progressive deterioration of physiological systems, related to age, which reduces the reserves of intrinsic capacity, which confers greater vulnerability to stressors. Although it tends to worsen spontaneously, with appropriate and early interventions, its consequences can be reversed, slowed or reduced. Objectives: To determine the frequency of frailty of the elderly according to Fried criteria in three Family Health Units of Areguá, Paraguay, in 2019. Methodology: Observational, descriptive, prospective, multicenter study. Men and women aged ≥60 years who attended the Family Health Units of Yuquyty, Costa Fleytas and Caacupemí (Areguá, Paraguay) in 2019 were included. Anthropometric and clinical variables were measured. Frailty was determined with Fried questionnaire, after informed consent. Results: Eighty-one subjects were included, with a mean age of 71±7 years, with a predominance of women (65%). The most frequent comorbidities were high blood pressure, arthropathies, and diabetes mellitus. Depression was self-reported in 9.8%. Frailty was detected in 53% and the most frequent deficit in Fried criteria was slow gait. The risk factor associated with frailty was female sex (p=0.006). Conclusions: Frailty was detected in 53%, with a predominance of women.

11.
Medicina (B Aires) ; 80 Suppl 3: 1-6, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32658841

RESUMO

The disease named COVID-19, caused by the SARS-CoV-2 coronavirus, is currently generating a global pandemic. Vaccine development is no doubt the best long-term immunological approach, but in the current epidemiologic and health emergency there is a need for rapid and effective solutions. Convalescent plasma is the only antibody-based therapy available for COVID-19 patients to date. Equine polyclonal antibodies (EpAbs) put forward a sound alternative. The new generation of processed and purified EpAbs containing highly purified F(ab')2 fragments demonstrated to be safe and well tolerated. EpAbs are easy to manufacture allowing a fast development and scaling up for a treatment. Based on these ideas, we present a new therapeutic product obtained after immunization of horses with the receptor-binding domain of the viral Spike glycoprotein. Our product shows around 50 times more potency in in vitro seroneutralization assays than the average of convalescent plasma. This result may allow us to test the safety and efficacy of this product in a phase 2/3 clinical trial to be conducted in July 2020 in the metropolitan area of Buenos Aires, Argentina.


La enfermedad denominada COVID-19 es causada por el coronavirus SARS-CoV-2 y es actualmente considerada una pandemia a nivel global. El desarrollo de vacunas es sin duda la mejor estrategia a largo plazo, pero debido a la emergencia sanitaria, existe una necesidad urgente de encontrar soluciones rápidas y efectivas para el tratamiento de la enfermedad. Hasta la fecha, el uso de plasma de convalecientes es la única inmunoterapia disponible para pacientes hospitalizados con COVID-19. El uso de anticuerpos policlonales equinos (EpAbs) es otra alternativa terapéutica interesante. La nueva generación de EpAbs incluyen el procesamiento y purificación de los mismos y la obtención de fragmentos F(ab')2 con alta pureza y un excelente perfil de seguridad en humanos. Los EpAbs son fáciles de producir, lo cual permite el desarrollo rápido y la elaboración a gran escala de un producto terapéutico. En este trabajo mostramos el desarrollo de un suero terapéutico obtenido luego de la inmunización de caballos utilizando el receptor-binding domain de la glicoproteína Spike del virus. Nuestro producto mostró ser alrededor de 50 veces más potente en ensayos de seroneutralización in vitro que el promedio de los plasmas de convalecientes. Estos resultados nos permitirían testear la seguridad y eficacia de nuestro producto en ensayos clínicos de fase 2/3 a realizarse a partir de julio de 2020 en la zona metropolitana de Buenos Aires, Argentina.


Assuntos
Anticorpos Antivirais , Infecções por Coronavirus/terapia , Soros Imunes/imunologia , Fragmentos Fab das Imunoglobulinas/isolamento & purificação , Imunoglobulina G/isolamento & purificação , Pandemias , Pneumonia Viral , Glicoproteína da Espícula de Coronavírus , Animais , Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/isolamento & purificação , Argentina , Betacoronavirus , COVID-19 , Cavalos , Humanos , Imunização Passiva , Fragmentos Fab das Imunoglobulinas/química , Imunoglobulina G/química , Testes de Neutralização , SARS-CoV-2 , Soroterapia para COVID-19
12.
Amino Acids ; 52(6-7): 925-939, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32556742

RESUMO

The multi-copper Laccase enzyme corresponds to one of the most investigated oxidoreductases for potential uses in xenobiotic bioremediation. In this work, we have investigated the photo-degradation process of Laccase from Trametesversicolor induced by UVB light and the influence on its activity over selected substrates. Laccase undergoes photo-degradation when irradiated with UVB light, and the process depends on the presence of oxygen in the medium. With the kinetic data obtained from stationary and time resolved measurements, a photo-degradation mechanism of auto-sensitization was proposed for the enzyme. Laccase generates singlet oxygen, by UVB light absorption, and this reactive oxygen species can trigger the photo-oxidation of susceptible amino acids residues present in the protein structure. The catalytic activity of Laccase was evaluated before and after UVB photolysis over hydroxy-aromatic compounds and substituted phenols which represent potential pollutants. The dye bromothymol blue, the antibiotic rifampicin and the model compound syringaldazine, were selected as substrates. The values of the kinetic parameters determined in our experiments indicate that the photo-oxidative process of Laccase has a very negative impact on its overall catalytic function. Despite this, we have not found evidence of structural damage by SDS-PAGE and circular dichroism experiments, which indicate that the enzyme retained its secondary structure. We believe that, given the importance of Laccase in environmental bioremediation, the information found about the stability of this kind of biomolecule exposed to UV solar irradiation may be relevant in the technological design and/or optimization of decontamination strategies.


Assuntos
Biodegradação Ambiental/efeitos da radiação , Poluentes Ambientais , Lacase/metabolismo , Lacase/efeitos da radiação , Absorção de Radiação , Dicroísmo Circular/métodos , Eletroforese em Gel de Poliacrilamida/métodos , Fluorescência , Oxirredução , Fotólise
13.
Medicina (B.Aires) ; 80(supl.3): 1-6, June 2020. ilus, graf, tab
Artigo em Inglês | LILACS | ID: biblio-1135184

RESUMO

The disease named COVID-19, caused by the SARS-CoV-2 coronavirus, is currently generating a global pandemic. Vaccine development is no doubt the best long-term immunological approach, but in the current epidemiologic and health emergency there is a need for rapid and effective solutions. Convalescent plasma is the only antibody-based therapy available for COVID-19 patients to date. Equine polyclonal antibodies (EpAbs) put forward a sound alternative. The new generation of processed and purified EpAbs containing highly purified F(ab’)2 fragments demonstrated to be safe and well tolerated. EpAbs are easy to manufacture allowing a fast development and scaling up for a treatment. Based on these ideas, we present a new therapeutic product obtained after immunization of horses with the receptor-binding domain of the viral Spike glycoprotein. Our product shows around 50 times more potency in in vitro seroneutralization assays than the average of convalescent plasma. This result may allow us to test the safety and efficacy of this product in a phase 2/3 clinical trial to be conducted in July 2020 in the metropolitan area of Buenos Aires, Argentina.


La enfermedad denominada COVID-19 es causada por el coronavirus SARS-CoV-2 y es actualmente considerada una pandemia a nivel global. El desarrollo de vacunas es sin duda la mejor estrategia a largo plazo, pero debido a la emergencia sanitaria, existe una necesidad urgente de encontrar soluciones rápidas y efectivas para el tratamiento de la enfermedad. Hasta la fecha, el uso de plasma de convalecientes es la única inmunoterapia disponible para pacientes hospitalizados con COVID-19. El uso de anticuerpos policlonales equinos (EpAbs) es otra alternativa terapéutica interesante. La nueva generación de EpAbs incluyen el procesamiento y purificación de los mismos y la obtención de fragmentos F(ab’)2 con alta pureza y un excelente perfil de seguridad en humanos. Los EpAbs son fáciles de producir, lo cual permite el desarrollo rápido y la elaboración a gran escala de un producto terapéutico. En este trabajo mostramos el desarrollo de un suero terapéutico obtenido luego de la inmunización de caballos utilizando el receptor-binding domain de la glicoproteína Spike del virus. Nuestro producto mostró ser alrededor de 50 veces más potente en ensayos de seroneutralización in vitro que el promedio de los plasmas de convalecientes. Estos resultados nos permitirían testear la seguridad y eficacia de nuestro producto en ensayos clínicos de fase 2/3 a realizarse a partir de julio de 2020 en la zona metropolitana de Buenos Aires, Argentina.


Assuntos
Humanos , Animais , Fragmentos Fab das Imunoglobulinas/isolamento & purificação , Infecções por Coronavirus/terapia , Soros Imunes/imunologia , Anticorpos Antivirais/isolamento & purificação , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/química , Argentina , Imunoglobulina G/isolamento & purificação , Imunoglobulina G/química , Fragmentos Fab das Imunoglobulinas/química , Testes de Neutralização , Pandemias , Betacoronavirus , SARS-CoV-2 , COVID-19 , Cavalos
14.
Cancers (Basel) ; 12(4)2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32290079

RESUMO

The development of thrombotic events is common among patients with polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). We studied the influence of pathogenic mutations frequently associated with myeloid malignancies on thrombotic events using next-generation sequencing (NGS) in an initial cohort of 68 patients with myeloproliferative neoplasms (MPN). As expected, the presence of mutations in DNMT3A, TET2, and ASXL1 (DTA genes) was positively associated with age for the whole cohort (p = 0.025, OR: 1.047, 95% CI: 1.006-1.090). Also, while not related with events in the whole cohort, DTA mutations were strongly associated with the development of vascular events in PV patients (p = 0.028). To confirm the possible association between the presence of DTA mutation and thrombotic events, we performed a case-control study on 55 age-matched patients with PV (including 12 PV patients from the initial cohort, 25 with event vs. 30 no event). In the age-matched case-control PV cohort, the presence of ≥1 DTA mutation significantly increased the risk of a thrombotic event (OR: 6.333, p = 0.0024). Specifically, mutations in TET2 were associated with thrombotic events in the PV case-control cohort (OR: 3.56, 95% CI: 1.15-11.83, p = 0.031). Our results suggest that pathogenic DTA mutations, and particularly TET2 mutations, may be an independent risk factor for thrombosis in patients with PV. However, the predictive value of TET2 and DTA mutations in ET and PMF was inconclusive and should be determined in a larger cohort.

15.
World J Clin Oncol ; 11(12): 996-1007, 2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33437662

RESUMO

Clinical trials have demonstrated that some patients with chronic myeloid leukemia (CML) treated for several years with tyrosine kinase inhibitors (TKIs) who have maintained a molecular response can successfully discontinue treatment without relapsing. Treatment free remission (TFR) can be reached by approximately 50% of patients who discontinue. Despite having similar levels of deep molecular response and an identical duration of treatment, the factors that influence the successful discontinuation of CML patients remain to be determined. In this review we will explore the factors identified to date that can help predict whether a patient will successfully achieve TFR. We will also discuss the need for the identification of predictive biomarkers associated with a high probability of achieving TFR for the future personalized identification of patients who are suitable for the discontinuation of TKI treatment.

16.
Mult Scler Relat Disord ; 34: 41-46, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31228715

RESUMO

OBJECTIVES: The commonest secondary cause for trigeminal neuralgia (TN) is multiple sclerosis (MS) and little is known about this group of patients in terms of their presentation and treatments. We compared patients with TN and MS (pwTNMS) with a cohort of patients with primary TN, who had been referred to the same specialist unit, both in terms of characteristics and impact on quality of life at the time of their first assessment. METHODS: Using a prospective patient database we extracted key clinical data and results from psychometrically tested questionnaires of 26 pwTNMS and compared them to an age and gender-matched set of 68 patients with primary TN. RESULTS: Our findings suggest that pwTNMS exhibit a more severe clinical phenotype than primary TN. Prior to referral, pwTNMS are more likely to have used more healthcare services and undergone more neurosurgical interventions. Strikingly, pwTNMS exhibit reduced lengths and duration of remission periods and fewer identifiable triggers. Furthermore, pwTNMS report significant impact on quality of life comparable to those in primary TN, scoring highly in measures of anxiety, depression, and catastrophizing, but also report greater sleep disturbance, and overall interference in activities of daily living. CONCLUSIONS: pwTNMS have a more intractable TN, one which may necessitate a more complex approach to treatment, earlier referral to secondary care and an extensive assessment of mental health. Quality of life in pwTNMS is severely affected by both their MS and their TN, suggesting management should occur in specialist centres with access to a multidisciplinary team.


Assuntos
Esclerose Múltipla/complicações , Esclerose Múltipla/epidemiologia , Neuralgia do Trigêmeo/complicações , Neuralgia do Trigêmeo/epidemiologia , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/terapia , Estudos Prospectivos , Neuralgia do Trigêmeo/terapia
17.
Nanoscale Adv ; 1(5): 1833-1846, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36134238

RESUMO

Engineering oligomeric protein self-assembly is an attractive approach to fabricate nanostructures with well-defined geometries, stoichiometry and functions. The homodecamer Brucella Lumazine Synthase (BLS) is a highly stable and immunogenic protein nanoparticle (PNP). Here, we engineered the BLS protein scaffold to display two functions in spatially opposite regions of its structure yielding a Janus-like nanoparticle. An in silico analysis of the BLS head-to-head dimer of homopentamers shows major inter-pentameric interactions located in the equatorial interface. Based on this analysis, two BLS protomer variants were designed to interrupt pentamer self-dimerization and promote heteropentameric dimers. This strategy enabled us to generate a decameric particle with two distinct sides formed by two independent pentamers. The versatility of this new self-assembly nanofabrication strategy is illustrated with two example applications. First, a bifunctional BLS bearing Alexa Fluor 488 fluorophores on one side and sialic acid binding domains on the other side was used for labelling murine and human cells and analyzed by flow cytometry and confocal microscopy. Second, multichromophoric FRET nanoparticles were fabricated and characterized at the single molecule level, showing discrete energy transfer events. The engineered BLS variants constitute a general platform for displaying two functions in a controlled manner within the same PNP with potential applications in various areas such as biomedicine, biotechnology and nanotechnology.

18.
Clin Sci (Lond) ; 131(20): 2503-2524, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-29026001

RESUMO

The deep and periventricular white matter is preferentially affected in several neurological disorders, including cerebral small vessel disease (SVD) and multiple sclerosis (MS), suggesting that common pathogenic mechanisms may be involved in this injury. Here we consider the potential pathogenic role of tissue hypoxia in lesion development, arising partly from the vascular anatomy of the affected white matter. Specifically, these regions are supplied by a sparse vasculature fed by long, narrow end arteries/arterioles that are vulnerable to oxygen desaturation if perfusion is reduced (as in SVD, MS and diabetes) or if the surrounding tissue is hypoxic (as in MS, at least). The oxygen crisis is exacerbated by a local preponderance of veins, as these can become highly desaturated 'sinks' for oxygen that deplete it from surrounding tissues. Additional haemodynamic deficiencies, including sluggish flow and impaired vasomotor reactivity and vessel compliance, further exacerbate oxygen insufficiency. The cells most vulnerable to hypoxic damage, including oligodendrocytes, die first, resulting in demyelination. Indeed, in preclinical models, demyelination is prevented if adequate oxygenation is maintained by raising inspired oxygen concentrations. In agreement with this interpretation, there is a predilection of lesions for the anterior and occipital horns of the lateral ventricles, namely regions located at arterial watersheds, or border zones, known to be especially susceptible to hypoperfusion and hypoxia. Finally, mitochondrial dysfunction due to genetic causes, as occurs in leucodystrophies or due to free radical damage, as occurs in MS, will compound any energy insufficiency resulting from hypoxia. Viewing lesion formation from the standpoint of tissue oxygenation not only reveals that lesion distribution is partly predictable, but may also inform new therapeutic strategies.


Assuntos
Encefalopatias/patologia , Doenças Desmielinizantes/patologia , Hipóxia , Mitocôndrias/metabolismo , Esclerose Múltipla/patologia , Substância Branca/fisiopatologia , Animais , Encefalopatias/sangue , Humanos , Esclerose Múltipla/etiologia
19.
Synth Biol (Oxf) ; 2(1): ysx006, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32995507

RESUMO

The diversity and flexibility of life offers a wide variety of molecules and systems useful for biosensing. A biosensor device should be robust, specific and reliable. Inorganic arsenic is a highly toxic water contaminant with worldwide distribution that poses a threat to public health. With the goal of developing an arsenic biosensor, we designed an incoherent feed-forward loop (I-FFL) genetic circuit to correlate its output pulse with the input signal in a relatively time-independent manner. The system was conceived exclusively based on the available BioBricks in the iGEM Registry of Standard Biological Parts. The expected behavior in silico was achieved; upon arsenic addition, the system generates a short-delayed reporter protein pulse that is dose dependent to the contaminant levels. This work is an example of the power and variety of the iGEM Registry of Standard Biological Parts, which can be reused in different sophisticated system designs like I-FFLs. Besides the scientific results, one of the main impacts of this synthetic biology project is the influence it had on team's members training and career choices which are summarized at the end of this article.

20.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 12): 1636-9, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25484215

RESUMO

Phytochromes give rise to the largest photosensor family known to date. However, they are underrepresented in the Protein Data Bank. Plant, cyanobacterial, fungal and bacterial phytochromes share a canonical architecture consisting of an N-terminal photosensory module (PAS2-GAF-PHY domains) and a C-terminal variable output module. The bacterium Xanthomonas campestris pv. campestris, a worldwide agricultural pathogen, codes for a single bacteriophytochrome (XccBphP) that has this canonical architecture, bearing a C-terminal PAS9 domain as the output module. Full-length XccBphP was cloned, expressed and purified to homogeneity by nickel-NTA affinity and size-exclusion chromatography and was then crystallized at room temperature bound to its cofactor biliverdin. A complete native X-ray diffraction data set was collected to a maximum resolution of 3.25 Å. The crystals belonged to space group P43212, with unit-cell parameters a = b = 103.94, c = 344.57 Šand a dimer in the asymmetric unit. Refinement is underway after solving the structure by molecular replacement.


Assuntos
Fitocromo/química , Xanthomonas campestris/química , Sequência de Aminoácidos , Cristalização , Cristalografia por Raios X , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...