Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 296: 100168, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33298522

RESUMO

Antibodies against Aß amyloid are indispensable research tools and potential therapeutics for Alzheimer's disease. They display several unusual properties, such as specificity for aggregated forms of the peptide, the ability to distinguish polymorphic aggregate structures, and the ability to recognize generic aggregation-related epitopes formed by unrelated amyloid sequences. Understanding the mechanisms underlying these unusual properties and the structures of their corresponding epitopes is crucial for the understanding why antibodies display different therapeutic activities and for the development of more effective therapeutic agents. Here we employed a novel "epitomic" approach to map the fine structure of the epitopes of 28 monoclonal antibodies against amyloid-beta using immunoselection of random sequences from a phage display library, deep sequencing, and pattern analysis to define the critical sequence elements recognized by the antibodies. Although most of the antibodies map to major linear epitopes in the amino terminal 1 to 14 residues of Aß, the antibodies display differences in the target sequence residues that are critical for binding and in their individual preferences for nontarget residues, indicating that the antibodies bind to alternative conformations of the sequence by different mechanisms. Epitomic analysis also identifies discontinuous, nonoverlapping sequence Aß segments that may constitute the conformational epitopes that underlie the aggregation specificity of antibodies. Aggregation-specific antibodies recognize sequences that display a significantly higher predicted propensity for forming amyloid than antibodies that recognize the monomer, indicating that the ability of random sequences to aggregate into amyloid is a critical element of their binding mechanism.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Anticorpos Monoclonais/metabolismo , Mapeamento de Epitopos/métodos , Epitopos/metabolismo , Fragmentos de Peptídeos/metabolismo , Placa Amiloide/metabolismo , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/patologia , Sequência de Aminoácidos , Peptídeos beta-Amiloides/química , Anticorpos Monoclonais/química , Sítios de Ligação , Encéfalo/metabolismo , Encéfalo/patologia , Epitopos/química , Humanos , Microtomia , Neurônios/metabolismo , Neurônios/patologia , Fragmentos de Peptídeos/química , Biblioteca de Peptídeos , Placa Amiloide/patologia , Agregados Proteicos , Análise Serial de Proteínas , Ligação Proteica
2.
J Alzheimers Dis ; 73(1): 229-246, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31771065

RESUMO

This work provides new insight into the age-related basis of Alzheimer's disease (AD), the composition of intraneuronal amyloid (iAß), and the mechanism of an age-related increase in iAß in adult AD-model mouse neurons. A new end-specific antibody for Aß45 and another for aggregated forms of Aß provide new insight into the composition of iAß and the mechanism of accumulation in old adult neurons from the 3xTg-AD model mouse. iAß levels containing aggregates of Aß45 increased 30-50-fold in neurons from young to old age and were further stimulated upon glutamate treatment. iAß was 8 times more abundant in 3xTg-AD than non-transgenic neurons with imaged particle sizes following the same log-log distribution, suggesting a similar snow-ball mechanism of intracellular biogenesis. Pathologically misfolded and mislocalized Alz50 tau colocalized with iAß and rapidly increased following a brief metabolic stress with glutamate. AßPP-CTF, Aß45, and aggregated Aß colocalized most strongly with mitochondria and endosomes and less with lysosomes and autophagosomes. Differences in iAß by sex were minor. These results suggest that incomplete carboxyl-terminal trimming of long Aßs by gamma-secretase produced large intracellular deposits which limited completion of autophagy in aged neurons. Understanding the mechanism of age-related changes in iAß processing may lead to application of countermeasures to prolong dementia-free health span.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Autofagossomos/metabolismo , Endossomos/metabolismo , Lisossomos/metabolismo , Mitocôndrias/metabolismo , Neurônios/metabolismo , Envelhecimento/metabolismo , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Células Cultivadas , Ácido Glutâmico/farmacologia , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Neurônios/ultraestrutura , Tamanho da Partícula
3.
Elife ; 82019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31612856

RESUMO

Alzheimer's disease (AD) pathology is characterized by plaques of amyloid beta (Aß) and neurofibrillary tangles of tau. Aß aggregation is thought to occur at early stages of the disease, and ultimately gives way to the formation of tau tangles which track with cognitive decline in humans. Here, we report the crystal structure of an Aß core segment determined by MicroED and in it, note characteristics of both fibrillar and oligomeric structure. Using this structure, we designed peptide-based inhibitors that reduce Aß aggregation and toxicity of already-aggregated species. Unexpectedly, we also found that these inhibitors reduce the efficiency of Aß-mediated tau aggregation, and moreover reduce aggregation and self-seeding of tau fibrils. The ability of these inhibitors to interfere with both Aß and tau seeds suggests these fibrils share a common epitope, and supports the hypothesis that cross-seeding is one mechanism by which amyloid is linked to tau aggregation and could promote cognitive decline.


Assuntos
Peptídeos beta-Amiloides/antagonistas & inibidores , Proteínas tau/metabolismo , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Animais , Cristalografia por Raios X , Humanos , Estrutura Molecular , Ligação Proteica , Conformação Proteica
4.
PLoS One ; 14(4): e0214847, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30947287

RESUMO

Due to their ability to preferentially induce cell death in tumor cells, while sparing healthy cells, TNF-related apoptosis-inducing ligand (TRAIL) and agonistic anti-TRAIL-R1 or anti-TRAIL-R2-specific antibodies are under clinical investigations for cancer-treatment. However, TRAIL-Rs may also induce signaling pathways, which result in malignant progression. TRAIL receptors are transcriptionally upregulated via wild-type p53 following radio- or chemotherapy. Nevertheless, the impact of p53 status on the expression and signaling of TRAIL-Rs is not fully understood. Therefore, we analyzed side by side apoptotic and non-apoptotic signaling induced by TRAIL or the agonistic TRAIL-R-specific antibodies Mapatumumab (anti-TRAIL-R1) and Lexatumumab (anti-TRAIL-R2) in the two isogenic colon carcinoma cell lines HCT116 p53+/+ and p53-/-. We found that HCT116 p53+/+ cells were significantly more sensitive to TRAIL-R-triggering than p53-/- cells. Similarly, A549 lung cancer cells expressing wild-type p53 were more sensitive to TRAIL-R-mediated cell death than their derivatives with knockdown of p53. Our data demonstrate that the contribution of p53 in regulating TRAIL-R-induced apoptosis does not correlate to the levels of TRAIL-Rs at the plasma membrane, but rather to p53-mediated upregulation of Bax, favouring the mitochondrial amplification loop. Consistently, stronger caspase-9 and caspase-3 activation as well as PARP-cleavage was observed following TRAIL-R-triggering in HCT116 p53+/+ compared to HCT116 p53-/- cells. Interestingly, HCT116 p53+/+ cells showed also a more potent activation of non-canonical TRAIL-R-induced signal transduction pathways like JNK, p38 and ERK1/ERK2 than p53-/- cells. Likewise, these cells induced IL-8 expression in response to TRAIL, Mapatumumab or Lexatumumab significantly stronger than p53-/- cells. We obtained similar results in A549 cells with or without p53-knockdown and in the two isogenic colon cancer cell lines RKO p53+/+ and p53-/-. In both cellular systems, we could clearly demonstrate the potentiating effects of p53 on TRAIL-R-mediated IL-8 induction. In conclusion, we found that wild-type p53 increases TRAIL-R-mediated apoptosis but simultaneously augments non-apoptotic signaling.


Assuntos
Apoptose/fisiologia , Neoplasias/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Células A549 , Membrana Celular/metabolismo , Técnicas de Silenciamento de Genes , Genes p53 , Células HCT116 , Humanos , Interleucina-8/biossíntese , Neoplasias/patologia , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/deficiência , Proteína X Associada a bcl-2/metabolismo
5.
Mol Neurodegener ; 13(1): 11, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29490706

RESUMO

BACKGROUND: Besides the two main classical features of amyloid beta aggregation and tau-containing neurofibrillary tangle deposition, neuroinflammation plays an important yet unclear role in the pathophysiology of Alzheimer's disease (AD). Microglia are believed to be key mediators of neuroinflammation during AD and responsible for the regulation of brain homeostasis by balancing neurotoxicity and neuroprotective events. We have previously reported evidence that neuritic plaques are derived from dead neurons that have accumulated intraneuronal amyloid and further recruit Iba1-positive cells, which play a role in either neuronal demise or neuritic plaque maturation or both. METHODS: To study the impact of microglia on neuritic plaque development, we treated two-month-old 5XFAD mice with a selective colony stimulation factor 1 receptor (CSF1R) inhibitor, PLX3397, for a period of 3 months, resulting in a significant ablation of microglia. Directly after this treatment, we analyzed the amount of intraneuronal amyloid and neuritic plaques and performed behavioral studies including Y-maze, fear conditioning and elevated plus maze. RESULTS: We found that early long-term PLX3397 administration results in a dramatic reduction of both intraneuronal amyloid as well as neuritic plaque deposition. PLX3397 treated young 5XFAD mice also displayed a significant decrease of soluble fibrillar amyloid oligomers in brain lysates, a depletion of soluble pre-fibrillar oligomers in plasma and an improvement in cognitive function measured by fear conditioning tests. CONCLUSIONS: Our findings demonstrate that CSF1R signaling, either directly on neurons or mediated by microglia, is crucial for the accumulation of intraneuronal amyloid and formation of neuritic plaques, suggesting that these two events are serially linked in a causal pathway leading to neurodegeneration and neuritic plaque formation. CSF1R inhibitors represent potential preventative or therapeutic approach that target the very earliest stages of the formation of intraneuronal amyloid and neuritic plaques.


Assuntos
Doença de Alzheimer/patologia , Aminopiridinas/farmacologia , Encéfalo/patologia , Microglia/efeitos dos fármacos , Neurônios/patologia , Pirróis/farmacologia , Doença de Alzheimer/metabolismo , Proteínas Amiloidogênicas/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores
6.
Nat Commun ; 8: 15319, 2017 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-28497789

RESUMO

The dynamic underwater chemistry seen in nature is inspiring for the next generation of eco-friendly nanochemistry. In this context, green synthesis of size-tailored nanoparticles in a facile and scalable manner via a dynamic process is an interesting challenge. Simulating the volcano-induced dynamic chemistry of the deep ocean, here we demonstrate the Leidenfrost dynamic chemistry occurring in an underwater overheated confined zone as a new tool for customized creation of nanoclusters of zinc peroxide. The hydrodynamic nature of the phenomenon ensures eruption of the nanoclusters towards a much colder region, giving rise to growth of monodisperse, size-tailored nanoclusters. Such nanoparticles are investigated in terms of their cytotoxicity on suspension and adherent cells to prove their applicability as cancer nanotherapeutics. Our research can pave the way for employment of the dynamic green nanochemistry in facile, scalable fabrication of size-tailored nanoparticles for biomedical applications.


Assuntos
Nanopartículas Metálicas/química , Neoplasias/terapia , Peróxidos/química , Zinco/química , Animais , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Química Verde/métodos , Células HT29 , Temperatura Alta , Humanos , Células Jurkat , Leucócitos Mononucleares/citologia , Nanopartículas Metálicas/ultraestrutura , Camundongos , Nanomedicina/métodos , Células U937
7.
Oncotarget ; 7(40): 64743-64756, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27556516

RESUMO

Previously, the expression of a non-secreted IL-4 variant (IL-4δ13) has been described in association with apoptosis and age-dependent Th2 T-cell polarization. Signaling pathways involved in this process have so far not been studied. Here we report the induction of IL-4δ13 expression in human γδ T-cells upon treatment with a sublethal dose of histone deacetylase (HDACi) inhibitor valproic acid (VPA). Induction of IL-4δ13 was associated with increased cytoplasmic IL-4Rα and decreased IL-4 expression, while mRNA for mature IL-4 was concomitantly down-regulated. Importantly, only the simultaneous combination of apoptosis and necroptosis inhibitors prevented IL-4δ13 expression and completely abrogated VPA-induced global histone H3K9 acetylation mark. Further, our work reveals a novel involvement of transcription factor c-Jun in the signaling network of IL-4, HDAC1, caspase-3 and mixed lineage kinase domain-like protein (MLKL). This study provides novel insights into the effects of epigenetic modulator VPA on human γδ T-cell differentiation.


Assuntos
Envelhecimento/fisiologia , Interleucina-4/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Linfócitos T/fisiologia , Células Th2/fisiologia , Caspase 3/metabolismo , Morte Celular , Células Cultivadas , Histona Desacetilase 1/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Histonas/metabolismo , Humanos , Interleucina-4/genética , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Ativação Linfocitária , Mutação/genética , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Transdução de Sinais , Regulação para Cima , Ácido Valproico/metabolismo
8.
Mol Cell Biol ; 36(20): 2626-44, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27528614

RESUMO

Recently, a type of regulated necrosis (RN) called necroptosis was identified to be involved in many pathophysiological processes and emerged as an alternative method to eliminate cancer cells. However, only a few studies have elucidated components of TRAIL-mediated necroptosis useful for anticancer therapy. Therefore, we have compared this type of cell death to tumor necrosis factor (TNF)-mediated necroptosis and found similar signaling through acid and neutral sphingomyelinases, the mitochondrial serine protease HtrA2/Omi, Atg5, and vacuolar H(+)-ATPase. Notably, executive mechanisms of both TRAIL- and TNF-mediated necroptosis are independent of poly(ADP-ribose) polymerase 1 (PARP-1), and depletion of p38α increases the levels of both types of cell death. Moreover, we found differences in signaling between TNF- and TRAIL-mediated necroptosis, e.g., a lack of involvement of ubiquitin carboxyl hydrolase L1 (UCH-L1) and Atg16L1 in executive mechanisms of TRAIL-mediated necroptosis. Furthermore, we discovered indications of an altered involvement of mitochondrial components, since overexpression of the mitochondrial protein Bcl-2 protected Jurkat cells from TRAIL- and TNF-mediated necroptosis, and overexpression of Bcl-XL diminished only TRAIL-induced necroptosis in Colo357 cells. Furthermore, TRAIL does not require receptor internalization and endosome-lysosome acidification to mediate necroptosis. Taken together, pathways described for TRAIL-mediated necroptosis and differences from those for TNF-mediated necroptosis might be unique targets to increase or modify necroptotic signaling and eliminate tumor cells more specifically in future anticancer approaches.


Assuntos
Neoplasias/patologia , Transdução de Sinais , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Fatores de Necrose Tumoral/metabolismo , Animais , Apoptose , Linhagem Celular Tumoral , Células HT29 , Humanos , Células Jurkat , Camundongos , Mitocôndrias/metabolismo , Necrose , Neoplasias/metabolismo
9.
Cardiovasc Res ; 110(3): 381-94, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27056896

RESUMO

AIMS: Down syndrome-associated dual-specificity tyrosine-(Y)-phosphorylation-regulated kinase 1A (DYRK1A) is a ubiquitously expressed protein kinase. Up to date a variety of targets have been identified, establishing a key role for Dyrk1a in selected signalling pathways. In cardiomyocytes, Dyrk1a acts as a negative regulator of hypertrophy by phosphorylating transcription factors of the NFAT family, but its mechanistic function in the heart remains poorly understood. This study was designed to investigate a potential protective role of Dyrk1a in cardiac hypertrophy in vivo. METHODS AND RESULTS: We generated transgenic mice with cardiac-specific overexpression of Dyrk1a. Counterintuitively, these mice developed severe dilated cardiomyopathy associated with congestive heart failure and premature death. In search for the cause of this unexpected phenotype, we found that Dyrk1a interacts with all members of the D-cyclin family and represses their protein levels in vitro and in vivo. Particularly, forced expression of Dyrk1a leads to increased phosphorylation of Ccnd2 on Thr280 and promotes its subsequent proteasomal degradation. Accordingly, cardiomyocytes overexpressing Dyrk1a display hypo-phosphorylated Rb1, suppression of Rb/E2f-signalling, and reduced expression of E2f-target genes, which ultimately results in impaired cell cycle progression. CONCLUSIONS: We identified Dyrk1a as a novel negative regulator of D-cyclin-mediated Rb/E2f-signalling. As dysregulation of this pathway with impaired cardiomyocyte proliferation leads to cardiomyopathy, dose-specific Dyrk1a expression and activity appears to be critical for the hyperplastic and hypertrophic growth of the developing heart.


Assuntos
Cardiomegalia/enzimologia , Cardiomiopatia Dilatada/enzimologia , Ciclina D/metabolismo , Fatores de Transcrição E2F/metabolismo , Miócitos Cardíacos/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Retinoblastoma/metabolismo , Transdução de Sinais , Animais , Cardiomegalia/genética , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Dilatada/fisiopatologia , Ciclo Celular , Proliferação de Células , Ciclina D/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica , Células HEK293 , Insuficiência Cardíaca/enzimologia , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Humanos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miócitos Cardíacos/patologia , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Ratos Wistar , Fatores de Tempo , Transfecção , Quinases Dyrk
10.
Cell Mol Life Sci ; 73(11-12): 2183-93, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27048810

RESUMO

Regulated cell death is one major factor to ensure homoeostasis in multicellular organisms. For decades, apoptosis was considered as the sole form of regulated cell death, whereas necrosis was believed to be accidental and unregulated. Due to this view, research on necrosis was somewhat neglected, especially in the field of anti-cancer treatment. However, new interest in necrosis has been sparked by the recent discovery of different forms of necrosis that show indeed regulated pathways. More and more studies now address the molecular pathways of regulated necrosis and its connections within the cellular signaling networks. Necroptosis, a subform of regulated necrosis, has so far hardly been focused on with regard to a future treatment of cancer patients and may emerge as a novel and effective approach to eliminate tumor cells. However, and similar to apoptosis, tumor cells can develop resistances against necroptosis to ensure their own survival. In this context, new molecules that enhance necroptosis are currently being identified to overcome such resistances. This review discusses cancer and necroptosis as friends or foes, i.e. the options to exploit necroptosis in anti-cancer therapies ("foes"), but also potential limitations that may block or actually cause necroptosis to act in a protumoral manner ("friends"). The balance between these two possible roles will determine whether necroptosis can indeed be used as a promising tool for early diagnosis of tumors, prevention of metastasis and anti-cancer treatment.


Assuntos
Apoptose/fisiologia , Necrose/patologia , Neoplasias/patologia , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Humanos , Neoplasias/diagnóstico , Neoplasias/terapia , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
11.
Cell Commun Signal ; 13: 25, 2015 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-25925126

RESUMO

BACKGROUND: One hallmark of cancer cells is their ability to evade physiologic signals causing regulated cell death (RCD). Correspondingly, TRAIL-based therapies to eliminate human cancer cells via enforced induction of apoptosis have been established and represent a promising approach in anti-cancer research. However, due to frequently appearing intrinsic or acquired resistances of tumor cells against apoptosis, TRAIL-based apoptotic strategies for the treatment of cancer patients have shown limited efficacy. As a potential alternative, regulated necrosis (and necroptosis triggered e.g. by TRAIL receptors 1/2) has recently gained considerable attention. Regulated necrosis represents a mode of RCD molecularly distinct from apoptosis whose potential in anti-cancer therapy is almost uncharacterized. Since in most cancer cells survival pathways counteract the effects of TRAIL-induced RCD, sensitizers such as cycloheximide (CHX) are frequently added in cell culture to overcome this problem. Unfortunately, those sensitizers are cytotoxic and therefore not suitable for the treatment of cancer patients. Here, we have alternatively employed homoharringtonine (HHT), a plant alkaloid which was recently approved by the U. S. Food and Drug Administration to treat patients with chronic myeloid lymphoma. RESULTS: We show that HHT is an efficient sensitizer for TRAIL-induced necroptosis in multiple human cancer cell lines. In addition, HHT-enhanced TRAIL-mediated necroptosis occurs via the same signaling pathways (involving RIPK1/RIPK3/MLKL) as CHX-enhanced necroptosis. Importantly, consecutive treatment schedules of necroptosis and apoptosis in either combination revealed remarkable additive effects not reached by repetitive apoptotic treatments alone. CONCLUSIONS: Taken together, our data demonstrate that HHT can replace harmful substances such as CHX to sensitize human cancer cells to TRAIL-induced necroptosis. Thus, HHT represents a promising enhancer in TRAIL-based necroptotic anti-cancer therapies also in patients.


Assuntos
Antineoplásicos/farmacologia , Harringtoninas/farmacologia , Neoplasias/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Linhagem Celular Tumoral , Cicloeximida/farmacologia , Mepesuccinato de Omacetaxina , Humanos , Necrose , Neoplasias/metabolismo , Neoplasias/patologia , Inibidores da Síntese de Proteínas/farmacologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo
12.
Cardiovasc Res ; 103(2): 206-16, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24920296

RESUMO

AIMS: Programmed necrosis (necroptosis) represents a newly identified mechanism of cell death combining features of both apoptosis and necrosis. Like apoptosis, necroptosis is tightly regulated by distinct signalling pathways. A key regulatory role in programmed necrosis has been attributed to interactions of the receptor-interacting protein kinases, RIP1 and RIP3. However, the specific functional role of RIP3-dependent signalling and necroptosis in the heart is unknown. The aims of this study were thus to assess the significance of necroptosis and RIP3 in the context of myocardial ischaemia. METHODS AND RESULTS: Immunoblots revealed strong expression of RIP3 in murine hearts, indicating potential functional significance of this protein in the myocardium. Consistent with a role in promoting necroptosis, adenoviral overexpression of RIP3 in neonatal rat cardiomyocytes and stimulation with TNF-α induced the formation of a complex of RIP1 and RIP3. Moreover, RIP3 overexpression was sufficient to induce necroptosis of cardiomyocytes. In vivo, cardiac expression of RIP3 was up-regulated upon myocardial infarction (MI). Conversely, mice deficient for RIP3 (RIP3(-/-)) showed a significantly better ejection fraction (45 ± 3.6 vs. 32 ± 4.4%, P < 0.05) and less hypertrophy in magnetic resonance imaging studies 30 days after experimental infarction due to left anterior descending coronary artery ligation. This was accompanied by a diminished inflammatory response of infarcted hearts and decreased generation of reactive oxygen species. CONCLUSION: Here, we show that RIP3-dependent necroptosis modulates post-ischaemic adverse remodelling in a mouse model of MI. This novel signalling pathway may thus be an attractive target for future therapies that aim to limit the adverse consequences of myocardial ischaemia.


Assuntos
Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Animais , Morte Celular/fisiologia , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Infarto do Miocárdio/patologia , Miocárdio/metabolismo , Miócitos Cardíacos/patologia , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia , Fator de Necrose Tumoral alfa/metabolismo
13.
Cell Mol Life Sci ; 71(2): 331-48, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23760205

RESUMO

Programmed necrosis is important in many (patho)physiological settings. For specific therapeutic intervention, however, a better knowledge is required whether necrosis occurs through one single "core program" or through several independent pathways. Previously, the poly(ADP-ribose) polymerase (PARP) pathway has been suggested as a crucial element of tumor necrosis factor (TNF)-mediated necroptosis. Here, we show that TNF-induced necroptosis and the PARP pathway represent distinct and independent routes to programmed necrosis. First, DNA-alkylating agents such as 1-methyl-3-nitro-1-nitrosoguanidine (MNNG) or methyl methanesulfonate rapidly activate the PARP pathway, whereas this is a late and secondary event in TNF-induced necroptosis. Second, inhibition of the PARP pathway does not protect against TNF-induced necroptosis, e.g., the PARP-1 inhibitor 3-AB prevented MNNG- but not TNF-induced adenosine-5'-triposphate depletion, translocation of apoptosis-inducing factor, and necrosis. Likewise, olaparib, a more potent and selective PARP-1 inhibitor failed to block TNF-induced necroptosis, identical to knockdown/knockout of PARP-1, pharmacologic and genetic interference with c-Jun N-terminal kinases and calpain/cathepsin proteases as further components of the PARP pathway. Third, interruption of TNF-induced necroptosis by interference with ceramide generation, RIP1 or RIP3 function or by the radical scavenger butylated hydroxyanisole did not prevent programmed necrosis through the PARP pathway. In summary, our results suggest that the currently established role of the PARP pathway in TNF-induced necroptosis needs to be revised, with consequences for the design of future therapeutic strategies.


Assuntos
Apoptose/efeitos dos fármacos , Poli(ADP-Ribose) Polimerases/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Animais , Antineoplásicos Alquilantes/farmacologia , Benzamidas/farmacologia , Calpaína/metabolismo , Catepsinas/metabolismo , Linhagem Celular , Ceramidas/metabolismo , Sequestradores de Radicais Livres/farmacologia , Guanidinas/farmacologia , Células HEK293 , Células HT29 , Células HeLa , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Células Jurkat , Células MCF-7 , Metanossulfonato de Metila/farmacologia , Camundongos , Necrose , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Ftalazinas/farmacologia , Piperazinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases , Poli(ADP-Ribose) Polimerases/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
14.
PLoS One ; 8(12): e84928, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24376854

RESUMO

The membrane bound NADPH oxidase involved in the synthesis of reactive oxygen species (ROS) is a multi-protein enzyme encoded by CYBA, CYBB, NCF1, NCF2 and NCF4 genes. Growing evidence suggests a role of ROS in the modulation of signaling pathways of non-phagocytic cells, including differentiation and proliferation of B-cell progenitors. Transcriptional downregulation of the CYBB gene has been previously reported in cell lines of the B-cell derived classical Hodgkin lymphoma (cHL). Thus, we explored functional consequences of CYBB downregulation on the NADPH complex. Using flow cytometry to detect and quantify superoxide anion synthesis in cHL cell lines we identified recurrent loss of superoxide anion production in all stimulated cHL cell lines in contrast to stimulated non-Hodgkin lymphoma cell lines. As CYBB loss proved to exert a deleterious effect on the NADPH oxidase complex in cHL cell lines, we analyzed the CYBB locus in Hodgkin and Reed-Sternberg (HRS) cells of primary cHL biopsies by in situ hybridisation and identified recurrent deletions of the gene in 8/18 cases. Immunohistochemical analysis to 14 of these cases revealed a complete lack of detectable CYBB protein expression in all HRS cells in all cases studied. Moreover, by microarray profiling of cHL cell lines we identified additional alterations of NADPH oxidase genes including CYBA copy number loss in 3/7 cell lines and a significant downregulation of the NCF1 transcription (p=0.006) compared to normal B-cell subsets. Besides, NCF1 protein was significantly downregulated (p<0.005) in cHL compared to other lymphoma cell lines. Together this findings show recurrent alterations of the NADPH oxidase encoding genes that result in functional inactivation of the enzyme and reduced production of superoxide anion in cHL.


Assuntos
Regulação Neoplásica da Expressão Gênica/fisiologia , Doença de Hodgkin/enzimologia , NADPH Oxidases/genética , Espécies Reativas de Oxigênio/metabolismo , Células de Reed-Sternberg/metabolismo , Linhagem Celular Tumoral , Variações do Número de Cópias de DNA , Citometria de Fluxo , Doença de Hodgkin/genética , Humanos , Imuno-Histoquímica , Hibridização In Situ , Glicoproteínas de Membrana/metabolismo , Análise em Microsséries , NADPH Oxidase 2 , NADPH Oxidases/metabolismo , Superóxidos/metabolismo
15.
Cell Commun Signal ; 11: 76, 2013 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-24090154

RESUMO

BACKGROUND: In apoptosis, proteolysis by caspases is the primary mechanism for both initiation and execution of programmed cell death (PCD). In contrast, the impact of proteolysis on the regulation and execution of caspase-independent forms of PCD (programmed necrosis, necroptosis) is only marginally understood. Likewise, the identity of the involved proteases has remained largely obscure. Here, we have investigated the impact of proteases in TNF-induced necroptosis. RESULTS: The serine protease inhibitor TPKC protected from TNF-induced necroptosis in multiple murine and human cells systems whereas inhibitors of metalloproteinases or calpain/cysteine and cathepsin proteases had no effect. A screen for proteins labeled by a fluorescent TPCK derivative in necroptotic cells identified HtrA2/Omi (a serine protease previously implicated in PCD) as a promising candidate. Demonstrating its functional impact, pharmacological inhibition or genetic deletion of HtrA2/Omi protected from TNF-induced necroptosis. Unlike in apoptosis, HtrA2/Omi did not cleave another protease, ubiquitin C-terminal hydrolase (UCH-L1) during TNF-induced necroptosis, but rather induced monoubiquitination indicative for UCH-L1 activation. Correspondingly, pharmacologic or RNA interference-mediated inhibition of UCH-L1 protected from TNF-induced necroptosis. We found that UCH-L1 is a mediator of caspase-independent, non-apoptotic cell death also in diseased kidney podocytes by measuring cleavage of the protein PARP-1, caspase activity, cell death and cell morphology. Indicating a role of TNF in this process, podocytes with stably downregulated UCH-L1 proved resistant to TNF-induced necroptosis. CONCLUSIONS: The proteases HtrA2/Omi and UCH-L1 represent two key components of TNF-induced necroptosis, validating the relevance of proteolysis not only for apoptosis, but also for caspase-independent PCD. Since UCH-L1 clearly contributes to the non-apoptotic death of podocytes, interference with the necroptotic properties of HtrA2/Omi and UCH-L1 may prove beneficial for the treatment of patients, e.g. in kidney failure.


Assuntos
Apoptose/fisiologia , Proteínas Mitocondriais/metabolismo , Serina Endopeptidases/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Ubiquitina Tiolesterase/metabolismo , Animais , Células Cultivadas , Células HT29 , Serina Peptidase 2 de Requerimento de Alta Temperatura A , Humanos , Células Jurkat , Camundongos , Células NIH 3T3 , Podócitos/metabolismo , Ratos , Ratos Wistar
16.
Radiat Oncol ; 4: 41, 2009 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-19818125

RESUMO

BACKGROUND: Programmed cell death (PCD) is essential for development and homeostasis of multicellular organisms and can occur by caspase-dependent apoptosis or alternatively, by caspase-independent PCD (ciPCD). Bcl-2, a central regulator of apoptosis, localizes to both mitochondria and the endoplasmic reticulum (ER). Whereas a function of mitochondrial and ER-specific Bcl-2 in apoptosis has been established in multiple studies, corresponding data for ciPCD do not exist. METHODS: We utilized Bcl-2 constructs specifically localizing to mitochondria (Bcl-2 ActA), the ER (Bcl-2 cb5), both (Bcl-2 WT) or the cytosol/nucleus (Bcl-2 DeltaTM) and determined their protective effect on ceramide-mediated ciPCD in transiently and stably transfected Jurkat cells. Expression of the constructs was verified by immunoblots. Ceramide-mediated ciPCD was induced by treatment with human recombinant tumor necrosis factor and determined by flow cytometric measurement of propidium iodide uptake as well as by optical analysis of cell morphology. RESULTS: Only wildtype Bcl-2 had the ability to efficiently protect from ceramide-mediated ciPCD, whereas expression of Bcl-2 solely at mitochondria, the ER, or the cytosol/nucleus did not prevent ceramide-mediated ciPCD. CONCLUSION: Our data suggest a combined requirement for both mitochondria and the ER in the induction and the signaling pathways of ciPCD mediated by ceramide.


Assuntos
Apoptose/fisiologia , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Western Blotting , Caspases/metabolismo , Ceramidas/toxicidade , Citometria de Fluxo , Humanos , Células Jurkat , Transdução de Sinais/fisiologia , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...