Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Am Coll Radiol ; 20(8): 730-737, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37498259

RESUMO

In this white paper, the ACR Pediatric AI Workgroup of the Commission on Informatics educates the radiology community about the health equity issue of the lack of pediatric artificial intelligence (AI), improves the understanding of relevant pediatric AI issues, and offers solutions to address the inadequacies in pediatric AI development. In short, the design, training, validation, and safe implementation of AI in children require careful and specific approaches that can be distinct from those used for adults. On the eve of widespread use of AI in imaging practice, the group invites the radiology community to align and join Image IntelliGently (www.imageintelligently.org) to ensure that the use of AI is safe, reliable, and effective for children.


Assuntos
Inteligência Artificial , Radiologia , Adulto , Humanos , Criança , Sociedades Médicas , Radiologia/métodos , Radiografia , Diagnóstico por Imagem/métodos
3.
J Am Coll Radiol ; 20(8): 724-729, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37352995

RESUMO

Several radiology artificial intelligence (AI) courses are offered by a variety of institutions and educators. The major radiology societies have developed AI curricula focused on basic AI principles and practices. However, a specific AI curriculum focused on pediatric radiology is needed to offer targeted education material on AI model development and performance evaluation. There are inherent differences between pediatric and adult practice patterns, which may hinder the application of adult AI models in pediatric cohorts. Such differences include the different imaging modality utilization, imaging acquisition parameters, lower radiation doses, the rapid growth of children and changes in their body composition, and the presence of unique pathologies and diseases, which differ in prevalence from adults. Thus, to enhance radiologists' knowledge of the applications of AI models in pediatric patients, curricula should be structured keeping in mind the unique pediatric setting and its challenges, along with methods to overcome these challenges, and pediatric-specific data governance and ethical considerations. In this report, the authors highlight the salient aspects of pediatric radiology that are necessary for AI education in the pediatric setting, including the challenges for research investigation and clinical implementation.


Assuntos
Inteligência Artificial , Radiologia , Adulto , Humanos , Criança , Radiologia/educação , Radiologistas , Escolaridade , Currículo
4.
Pediatr Radiol ; 53(7): 1324-1335, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36604317

RESUMO

Neuroimaging protocols play an important role in the timely evaluation and treatment of pediatric stroke and its mimics. MRI protocols for stroke in the pediatric population should be guided by the clinical scenario and neurologic examination, with consideration of age, suspected infarct type and underlying risk factors. Acute stroke diagnosis and causes in pediatric age groups can differ significantly from those in adult populations, and delay in stroke diagnosis among children is a common problem. An awareness of pediatric stroke presentations and risk factors among pediatric emergency physicians, neurologists, pediatricians, subspecialists and radiologists is critical to ensuring timely diagnosis. Given special considerations related to unique pediatric stroke risk factors and the need for sedation in some children, expert consensus guidelines for the imaging of suspected pediatric infarct have been proposed. In this article the authors review standard and rapid MRI protocols for the diagnosis of pediatric stroke, as well as the key differences between pediatric and adult stroke imaging.


Assuntos
Acidente Vascular Cerebral , Criança , Humanos , Acidente Vascular Cerebral/diagnóstico por imagem , Imageamento por Ressonância Magnética , Neuroimagem/métodos , Tomografia Computadorizada por Raios X , Infarto
6.
J Pediatr ; 236: 54-61.e1, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34004191

RESUMO

OBJECTIVE: To demonstrate that a novel noninvasive index of intracranial pressure (ICP) derived from diffuse optics-based techniques is associated with intracranial hypertension. STUDY DESIGN: We compared noninvasive and invasive ICP measurements in infants with hydrocephalus. Infants born term and preterm were eligible for inclusion if clinically determined to require cerebrospinal fluid (CSF) diversion. Ventricular size was assessed preoperatively via ultrasound measurement of the fronto-occipital (FOR) and frontotemporal (FTHR) horn ratios. Invasive ICP was obtained at the time of surgical intervention with a manometer. Intracranial hypertension was defined as invasive ICP ≥15 mmHg. Diffuse optical measurements of cerebral perfusion, oxygen extraction, and noninvasive ICP were performed preoperatively, intraoperatively, and postoperatively. Optical and ultrasound measures were compared with invasive ICP measurements, and their change in values after CSF diversion were obtained. RESULTS: We included 39 infants, 23 with intracranial hypertension. No group difference in ventricular size was found by FOR (P = .93) or FTHR (P = .76). Infants with intracranial hypertension had significantly higher noninvasive ICP (P = .02) and oxygen extraction fraction (OEF) (P = .01) compared with infants without intracranial hypertension. Increased cerebral blood flow (P = .005) and improved OEF (P < .001) after CSF diversion were observed only in infants with intracranial hypertension. CONCLUSIONS: Noninvasive diffuse optical measures (including a noninvasive ICP index) were associated with intracranial hypertension. The findings suggest that impaired perfusion from intracranial hypertension was independent of ventricular size. Hemodynamic evidence of the benefits of CSF diversion was seen in infants with intracranial hypertension. Noninvasive optical techniques hold promise for aiding the assessment of CSF diversion timing.


Assuntos
Circulação Cerebrovascular/fisiologia , Hidrocefalia/diagnóstico por imagem , Hidrocefalia/fisiopatologia , Hipertensão Intracraniana/diagnóstico , Derivações do Líquido Cefalorraquidiano , Estudos de Viabilidade , Feminino , Humanos , Hidrocefalia/cirurgia , Recém-Nascido , Hipertensão Intracraniana/etiologia , Hipertensão Intracraniana/fisiopatologia , Pressão Intracraniana/fisiologia , Masculino , Imagem Óptica , Projetos Piloto , Reprodutibilidade dos Testes , Análise Espectral
7.
Pediatr Radiol ; 51(5): 709-715, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33871724

RESUMO

Establishing a magnetic resonance (MR) safety program is crucial to ensuring the safe MR imaging of pediatric patients. The organizational structure includes a core safety council and broader safety committee comprising all key stakeholders. These groups work in synchrony to establish a strong culture of safety; create and maintain policies and procedures; implement device regulations for entry into the MR setting; construct MR safety zones; address intraoperative MR concerns; guarantee safe scanning parameters, including complying with specific absorption rate limitations; adhere to national regulatory body guidelines; and ensure appropriate communication among all parties in the MR environment. Perspectives on the duties of the safety council members provide important insight into the organization of program oversite. Ultimately, the collective dedication and vigilance of all MR staff are crucial to the success of a safety program.


Assuntos
Comunicação , Imageamento por Ressonância Magnética , Criança , Humanos , Espectroscopia de Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...