Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(14)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35890786

RESUMO

The digital transformation of the defence sector is not exempt from innovative requirements and challenges, with the lack of availability of reliable, unbiased and consistent data for training automatisms (machine learning algorithms, decision-making, what-if recreation of operational conditions, support the human understanding of the hybrid operational picture, personnel training/education, etc.) being one of the most relevant gaps. In the context of cyber defence, the state-of-the-art provides a plethora of data network collections that tend to lack presenting the information of all communication layers (physical to application). They are synthetically generated in scenarios far from the singularities of cyber defence operations. None of these data network collections took into consideration usage profiles and specific environments directly related to acquiring a cyber situational awareness, typically missing the relationship between incidents registered at the hardware/software level and their impact on the military mission assets and objectives, which consequently bypasses the entire chain of dependencies between strategic, operational, tactical and technical domains. In order to contribute to the mitigation of these gaps, this paper introduces CYSAS-S3, a novel dataset designed and created as a result of a joint research action that explores the principal needs for datasets by cyber defence centres, resulting in the generation of a collection of samples that correlate the impact of selected Advanced Persistent Threats (APT) with each phase of their cyber kill chain, regarding mission-level operations and goals.


Assuntos
Conscientização , Software , Algoritmos , Comunicação , Humanos , Aprendizado de Máquina
2.
Sensors (Basel) ; 20(16)2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32806550

RESUMO

Botnets are some of the most recurrent cyber-threats, which take advantage of the wide heterogeneity of endpoint devices at the Edge of the emerging communication environments for enabling the malicious enforcement of fraud and other adversarial tactics, including malware, data leaks or denial of service. There have been significant research advances in the development of accurate botnet detection methods underpinned on supervised analysis but assessing the accuracy and performance of such detection methods requires a clear evaluation model in the pursuit of enforcing proper defensive strategies. In order to contribute to the mitigation of botnets, this paper introduces a novel evaluation scheme grounded on supervised machine learning algorithms that enable the detection and discrimination of different botnets families on real operational environments. The proposal relies on observing, understanding and inferring the behavior of each botnet family based on network indicators measured at flow-level. The assumed evaluation methodology contemplates six phases that allow building a detection model against botnet-related malware distributed through the network, for which five supervised classifiers were instantiated were instantiated for further comparisons-Decision Tree, Random Forest, Naive Bayes Gaussian, Support Vector Machine and K-Neighbors. The experimental validation was performed on two public datasets of real botnet traffic-CIC-AWS-2018 and ISOT HTTP Botnet. Bearing the heterogeneity of the datasets, optimizing the analysis with the Grid Search algorithm led to improve the classification results of the instantiated algorithms. An exhaustive evaluation was carried out demonstrating the adequateness of our proposal which prompted that Random Forest and Decision Tree models are the most suitable for detecting different botnet specimens among the chosen algorithms. They exhibited higher precision rates whilst analyzing a large number of samples with less processing time. The variety of testing scenarios were deeply assessed and reported to set baseline results for future benchmark analysis targeted on flow-based behavioral patterns.

3.
Sensors (Basel) ; 20(7)2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32272806

RESUMO

In recent years, dynamic user verification has become one of the basic pillars for insider threat detection. From these threats, the research presented in this paper focuses on masquerader attacks, a category of insiders characterized by being intentionally conducted by persons outside the organization that somehow were able to impersonate legitimate users. Consequently, it is assumed that masqueraders are unaware of the protected environment within the targeted organization, so it is expected that they move in a more erratic manner than legitimate users along the compromised systems. This feature makes them susceptible to being discovered by dynamic user verification methods based on user profiling and anomaly-based intrusion detection. However, these approaches are susceptible to evasion through the imitation of the normal legitimate usage of the protected system (mimicry), which is being widely exploited by intruders. In order to contribute to their understanding, as well as anticipating their evolution, the conducted research focuses on the study of mimicry from the standpoint of an uncharted terrain: the masquerade detection based on analyzing locality traits. With this purpose, the problem is widely stated, and a pair of novel obfuscation methods are introduced: locality-based mimicry by action pruning and locality-based mimicry by noise generation. Their modus operandi, effectiveness, and impact are evaluated by a collection of well-known classifiers typically implemented for masquerade detection. The simplicity and effectiveness demonstrated suggest that they entail attack vectors that should be taken into consideration for the proper hardening of real organizations.


Assuntos
Segurança Computacional , Simulação por Computador , Aprendizado de Máquina
4.
Sensors (Basel) ; 17(10)2017 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-29065473

RESUMO

Autonomic self-management is a key challenge for next-generation networks. This paper proposes an automated analysis framework to infer knowledge in 5G networks with the aim to understand the network status and to predict potential situations that might disrupt the network operability. The framework is based on the Endsley situational awareness model, and integrates automated capabilities for metrics discovery, pattern recognition, prediction techniques and rule-based reasoning to infer anomalous situations in the current operational context. Those situations should then be mitigated, either proactive or reactively, by a more complex decision-making process. The framework is driven by a use case methodology, where the network administrator is able to customize the knowledge inference rules and operational parameters. The proposal has also been instantiated to prove its adaptability to a real use case. To this end, a reference network traffic dataset was used to identify suspicious patterns and to predict the behavior of the monitored data volume. The preliminary results suggest a good level of accuracy on the inference of anomalous traffic volumes based on a simple configuration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA