Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 35(44): 14248-14257, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31644297

RESUMO

Particles with a superparamagnetic cobalt inner core, silica outer core, and covalently bound homopolypeptide shell were investigated under thermal and magnetic stimuli. The homopolypeptide was poly(ε-carbobenzyloxy-l-lysine), PCBL, which is known to exhibit a thermoreversible coil ⇔ helix transition when dissolved as a pure polymer in m-cresol. Tethering to a core particle did not prevent PCBL from undergoing this conformational transition, as confirmed by dynamic light scattering and optical rotation, but the transition was broadened compared to that of the untethered polymer. The Co@SiO2-PCBL hybrid particles retained the superparamagnetic properties of the cobalt inner nougat. Indeed, some response remains even after aging for >5 years. The aged PCBL shell also preserved its responsiveness to temperature, although differences in the shape of the size vs temperature transition curve were observed compared to the freshly made particles. A reversible coil ⇔ helix transition for a particle-bound polypeptide in a pure organic solvent is rare. In addition to providing a convenient tool for characterizing coil ⇔ helix transitions for surface-bound polypeptides without interference from pH or the strong ionic forces that dominate behavior in aqueous systems, the Co@SiO2-PCBL/m-cresol system may prove useful in studies of the effect of shell polymer conformation on colloid interactions. The stability of the magnetic core and polypeptide shell suggest a long shelf life for Co@SiO2-PCBL, which can, in principle, be deprotected to yield positively charged Co@SiO2-poly(l-lysine) particles for possible transfection or antimicrobial applications or chained magnetically to produce responsive poly(colloids).

2.
Langmuir ; 30(12): 3373-80, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24635125

RESUMO

Poly(tetrafluoroethylene) (PTFE) latex particles have been analyzed and sorted according to size using asymmetric flow field flow fractionation (AF4) coupled with multiple-angle light scattering (MALS). Characterization of fractions by regular and depolarized dynamic light scattering confirmed that smaller particles elute prior to larger ones, as expected for field flow fractionation. The measured radii of the optically and geometrically anisotropic particles are consistent with those determined from transmission electron microscopy (TEM). A certain amount of heterogeneity remains in the fractions, but their uniformity for use as diffusion probes is improved. Full characterization of PTFE colloids will require a difficult assessment of the distribution, even within fractions, of the optical anisotropy. A general method to obtain number versus size distributions is presented. This approach is valid even when an online concentration detector is not available or ineffective. The procedure is adaptable to particles of almost any regular shape.

3.
ACS Macro Lett ; 2(5): 398-402, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35581845

RESUMO

Weak polyelectrolytes (PEs) are complex because intertwined connections between conformation and charge are regulated by the local dielectric environment. While end-tethered PE chains-so-called PE "brushes"-are archetypal systems for comprehending structure-property relationships, it is revealed that the reference state nominally referred to as "dry" is, in fact, a situation in which the chains are hydrated by water vapor in the ambient. Using charge-negative PE homopolymer brushes based on methacrylic acid and copolymer brushes that incorporate methacrylic acid and 2-hydroxyethylmethacrylate, we determine self-consistently the water content of PE films using neutron reflectometry under different hydration conditions. Modeling multiple data sets, we obtain dry polymer mass density and layer thickness, independent of adsorbed water, and PE brush profiles into different pH solutions. We show that hydration of the chains distorts, here by as much as 30%, the quantification of these important physical parameters benchmarked to films in ambient conditions.

4.
Langmuir ; 28(13): 5562-9, 2012 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-22428537

RESUMO

Amine-functionalized colloidal silica finds use in a variety of applications and fundamental investigations. To explore convenient methods of synthesis and characterization of research-grade materials in relatively large quantities, nearly monodisperse colloidal silica particles were prepared by base-catalyzed hydrolysis of reagent-grade tetraethyl orthosilicate (TEOS) without the traditional time- and energy-consuming distillation step. Radius was varied reliably from 30 to 125 nm by changing the water/TEOS ratio. Asymmetric flow field flow fractionation (AF4) methods with online light scattering detection proved effective in assessing the uniformity of the various preparations. Even highly uniform commercial standards were resolved by AF4. The surface of the colloidal silica was decorated with amino groups using (3-aminopropyl) trimethoxysilane and spacer methyl groups from methyl-trimethoxysilane. The surface density of amino groups was quantified spectrophotometrically after reaction with ninhydrin; the nature of this analysis avoids interference from sample turbidity. As an alternative to the ninhydrin test, an empirical relationship between surface density of amino groups and zeta potential at low pH was found. The size of the colloidal silica was predictably decreased by etching with HF; this method will be effective for some preparations, despite a modest reduction in size uniformity.

5.
Langmuir ; 27(10): 5986-96, 2011 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-21506527

RESUMO

Functional soft interfaces are of interest for a variety of technologies. We describe three methods for preparing substrates with alkyne groups, which show versatility for "click" chemistry reactions. Two of the methods have the same root: formation of thin, covalently attached, reactive interfacial layers of poly(glycidyl methacrylate) (PGMA) via spin coating onto silicon wafers followed by reactive modification with either propargylamine or 5-hexynoic acid. The amine or the carboxylic acid moieties react with the epoxy groups of PGMA, creating interfacial polymer layers decorated with alkyne groups. The third method consists of using copolymers comprising glycidyl methacrylate and propargyl methacrylate (pGP). The pGP copolymers are spin coated and covalently attached on silicon wafers. For each method, we investigate the factors that control film thickness and content of alkyne groups using ellipsometry, and study the nanophase structure of the films using neutron reflectometry. Azide-terminated polymers of methacrylic acid and 2-vinyl-4,4-dimethylazlactone synthesized via reversible addition-fragmentation chain transfer polymerization were attached to the alkyne-modified substrates using "click" chemistry, and grafting densities in the range of 0.007-0.95 chains nm(-2) were attained. The maximum density of alkyne groups attained by functionalization of PGMA with propargylamine or 5-hexynoic acid was approximately 2 alkynes nm(-3). The alkyne content obtained by the three decorating approaches was sufficiently high that it was not the limiting factor for the click reaction of azide-capped polymers.


Assuntos
Alcinos/química , Química Click , Ácidos Polimetacrílicos/química , Compostos de Epóxi/química , Metacrilatos/química , Silício/química , Propriedades de Superfície
6.
Langmuir ; 26(19): 15604-13, 2010 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-20836525

RESUMO

A method is presented for preparing core-shell silica-polypeptide composite particles with variable and controllable shell growth. The procedure is demonstrated using poly(carbobenzoxy-L-lysine) and poly(benzyl-L-glutamate); after deprotection, these can lead to the most common basic and acidic homopolypeptides, poly(L-lysine) and poly(L-glutamic acid). Control over shell thickness is made possible by sequential addition of N-carboxyanhydride peptide monomer to surfaces that have been functionalized with an amino initiator combined with a surface passivation agent. This results in a series of particles having different shell thicknesses. Variation of shell thickness was evident both in light scattering and in thermogravimetric assays. The shells were visible by transmission electron microscopy; these images along with light scattering measurements suggest the polymers in the shells are highly solvated.


Assuntos
Peptídeos/química , Dióxido de Silício/química , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Transmissão , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA