Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Drug Alcohol Depend ; 240: 109640, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36179506

RESUMO

Delta-8-tetrahydrocannabinol (Δ8-THC) is a psychotropic cannabinoid produced in low quantities in the cannabis plant. Refinements in production techniques, paired with the availability of inexpensive cannabidiol substrate, have resulted in Δ8-THC being widely marketed as a quasi-legal, purportedly milder alternative to Δ9-THC. Yet, little research has probed the behavioral and physiological effects of repeated Δ8-THC use. The present study aimed to evaluate the effects of acute and repeated exposure to Δ8-THC. We hypothesized that Δ8-THC produces effects similar to Δ9-THC, including signs of drug tolerance and dependence. Adult male and female C57BL/6J mice were treated acutely with Δ8-THC (6.25-100 mg/kg, i.p.) or vehicle and tested in the tetrad battery to quantify cannabimimetic effects (i.e., catalepsy, antinociception, hypothermia, immobility) as compared with a non-selective synthetic cannabinoid (WIN 55,212-2) and Δ9-THC. As previously reported, Δ8-THC (≥12.5 mg/kg) induced cannabimimetic effects. Pretreatment with the CB1 receptor-selective antagonist rimonabant (3 mg/kg, i.p.) blocked each of these effects. In addition, repeated administration of Δ8-THC (50 mg/kg, s.c.) produced tolerance, as well as cross-tolerance to WIN 55,212-2 (10 mg/kg, s.c.) in tetrad, consistent with downregulated CB1 receptor function. Behavioral signs of physical dependence in the somatic signs, tail suspension, and marble burying assays were also observed following rimonabant-precipitated withdrawal from Δ8-THC (≥10 mg/kg BID for 6 days). Lastly, Δ8-THC produced Δ9-THC-like discriminative stimulus effects in both male and female mice. Together, these findings demonstrate that Δ8-THC produces qualitatively similar effects to Δ9-THC, including risk of drug dependence and abuse liability.


Assuntos
Canabidiol , Canabinoides , Animais , Camundongos , Dronabinol/farmacologia , Rimonabanto , Piperidinas/farmacologia , Camundongos Endogâmicos C57BL , Pirazóis/farmacologia , Carbonato de Cálcio , Receptor CB1 de Canabinoide
2.
J Chem Inf Model ; 53(4): 879-86, 2013 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-23521565

RESUMO

An enhanced dielectric permittivity of polyethylene and related polymers, while not overly sacrificing their excellent insulating properties, is highly desirable for various electrical energy storage applications. In this computational study, we use density functional theory (DFT) in combination with modified group additivity based high throughput techniques to identify promising chemical motifs that can increase the dielectric permittivity of polyethylene. We consider isolated polyethylene chains and allow the CH2 units in the backbone to be replaced by a number of Group IV halides (viz., SiF2, SiCl2, GeF2, GeCl2, SnF2, or SnCl2 units) in a systematic, progressive, and exhaustive manner. The dielectric permittivity of the chemically modified polyethylene chains is determined by employing DFT computations in combination with the effective medium theory for a limited set of compositions and configurations. The underlying chemical trends in the DFT data are first rationalized in terms of various tabulated atomic properties of the constituent atoms. Next, by parametrizing a modified group contribution expansion using the DFT data set, we are able to predict the dielectric permittivity and bandgap of nearly 30,000 systems spanning a much larger part of the configurational and compositional space. Promising motifs which lead to simultaneously large dielectric constant and band gap in the modified polyethylene chains have been identified. Our theoretical work is expected to serve as a possible motivation for future experimental efforts.

3.
Chem Rev ; 100(7): 2595-626, 2000 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-11749297
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...