Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 371(6533): 1056-1059, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33602865

RESUMO

Frontier orbitals determine fundamental molecular properties such as chemical reactivities. Although electron distributions of occupied orbitals can be imaged in momentum space by photoemission tomography, it has so far been impossible to follow the momentum-space dynamics of a molecular orbital in time, for example, through an excitation or a chemical reaction. Here, we combined time-resolved photoemission using high laser harmonics and a momentum microscope to establish a tomographic, femtosecond pump-probe experiment of unoccupied molecular orbitals. We measured the full momentum-space distribution of transiently excited electrons, connecting their excited-state dynamics to real-space excitation pathways. Because in molecules this distribution is closely linked to orbital shapes, our experiment may, in the future, offer the possibility of observing ultrafast electron motion in time and space.

2.
Phys Rev Lett ; 125(10): 106102, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32955317

RESUMO

We report the use of a surfactant molecule during the epitaxy of graphene on SiC(0001) that leads to the growth in an unconventional orientation, namely R0° rotation with respect to the SiC lattice. It yields a very high-quality single-layer graphene with a uniform orientation with respect to the substrate, on the wafer scale. We find an increased quality and homogeneity compared to the approach based on the use of a preoriented template to induce the unconventional orientation. Using spot profile analysis low-energy electron diffraction, angle-resolved photoelectron spectroscopy, and the normal incidence x-ray standing wave technique, we assess the crystalline quality and coverage of the graphene layer. Combined with the presence of a covalently bound graphene layer in the conventional orientation underneath, our surfactant-mediated growth offers an ideal platform to prepare epitaxial twisted bilayer graphene via intercalation.

3.
J Phys Chem Lett ; 8(1): 208-213, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27935313

RESUMO

Orbitals are invaluable in providing a model of bonding in molecules or between molecules and surfaces. Most present-day methods in computational chemistry begin by calculating the molecular orbitals of the system. To what extent have these mathematical objects analogues in the real world? To shed light on this intriguing question, we employ a photoemission tomography study on monolayers of 3,4,9,10-perylene-tetracarboxylic acid dianhydride (PTCDA) grown on three Ag surfaces. The characteristic photoelectron angular distribution enables us to assign individual molecular orbitals to the emission features. When comparing the resulting energy positions to density functional calculations, we observe deviations in the energy ordering. By performing complete active space calculations (CASSCF), we can explain the experimentally observed orbital ordering, suggesting the importance of static electron correlation beyond a (semi)local approximation. On the other hand, our results also show reality and robustness of the orbital concept, thereby making molecular orbitals accessible to experimental observations.

4.
Phys Rev Lett ; 116(12): 126805, 2016 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-27058093

RESUMO

We investigate the structural and electronic properties of nitrogen-doped epitaxial monolayer graphene and quasifreestanding monolayer graphene on 6H-SiC(0001) by the normal incidence x-ray standing wave technique and by angle-resolved photoelectron spectroscopy supported by density functional theory simulations. With the location of various nitrogen species uniquely identified, we observe that for the same doping procedure, the graphene support, consisting of substrate and interface, strongly influences the structural as well as the electronic properties of the resulting doped graphene layer. Compared to epitaxial graphene, quasifreestanding graphene is found to contain fewer nitrogen dopants. However, this lack of dopants is compensated by the proximity of nitrogen atoms at the interface that yield a similar number of charge carriers in graphene.

5.
Nat Commun ; 6: 8287, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26437297

RESUMO

Recently, it has been shown that experimental data from angle-resolved photoemission spectroscopy on oriented molecular films can be utilized to retrieve real-space images of molecular orbitals in two dimensions. Here, we extend this orbital tomography technique by performing photoemission initial state scans as a function of photon energy on the example of the brickwall monolayer of 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) on Ag(110). The overall dependence of the photocurrent on the photon energy can be well accounted for by assuming a plane wave for the final state. However, the experimental data, both for the highest occupied and the lowest unoccupied molecular orbital of PTCDA, exhibits an additional modulation attributed to final state scattering effects. Nevertheless, as these effects beyond a plane wave final state are comparably small, we are able, with extrapolations beyond the attainable photon energy range, to reconstruct three-dimensional images for both orbitals in agreement with calculations for the adsorbed molecule.

6.
Phys Rev Lett ; 114(10): 106804, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25815955

RESUMO

We measure the adsorption height of hydrogen-intercalated quasifreestanding monolayer graphene on the (0001) face of 6H silicon carbide by the normal incidence x-ray standing wave technique. A density functional calculation for the full (6√3×6√3)-R30° unit cell, based on a van der Waals corrected exchange correlation functional, finds a purely physisorptive adsorption height in excellent agreement with experiments, a very low buckling of the graphene layer, a very homogeneous electron density at the interface, and the lowest known adsorption energy per atom for graphene on any substrate. A structural comparison to other graphenes suggests that hydrogen-intercalated graphene on 6H-SiC(0001) approaches ideal graphene.

7.
Phys Chem Chem Phys ; 17(3): 1530-48, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25475998

RESUMO

What do energy level alignments at metal-organic interfaces reveal about the metal-molecule bonding strength? Is it permissible to take vertical adsorption heights as indicators of bonding strengths? In this paper we analyse 3,4,9,10-perylene-tetracarboxylic acid dianhydride (PTCDA) on the three canonical low index Ag surfaces to provide exemplary answers to these questions. Specifically, we employ angular resolved photoemission spectroscopy for a systematic study of the energy level alignments of the two uppermost frontier states in ordered monolayer phases of PTCDA. Data are analysed using the orbital tomography approach. This allows the unambiguous identification of the orbital character of these states, and also the discrimination between inequivalent species. Combining this experimental information with DFT calculations and the generic Newns-Anderson chemisorption model, we analyse the alignments of highest occupied and lowest unoccupied molecular orbitals (HOMO and LUMO) with respect to the vacuum levels of bare and molecule-covered surfaces. This reveals clear differences between the two frontier states. In particular, on all surfaces the LUMO is subject to considerable bond stabilization through the interaction between the molecular π-electron system and the metal, as a consequence of which it also becomes occupied. Moreover, we observe a larger bond stabilization for the more open surfaces. Most importantly, our analysis shows that both the orbital binding energies of the LUMO and the overall adsorption heights of the molecule are linked to the strength of the chemical interaction between the molecular π-electron system and the metal, in the sense that stronger bonding leads to shorter adsorption heights and larger orbital binding energies.

8.
Phys Rev Lett ; 104(3): 036102, 2010 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-20366661

RESUMO

We employ normal-incidence x-ray standing wave and temperature programed desorption spectroscopy to derive the adsorption geometry and energetics of the prototypical molecular switch azobenzene at Ag(111). This allows us to assess the accuracy of semiempirical correction schemes as a computationally efficient means to overcome the deficiency of semilocal density-functional theory with respect to long-range van der Waals (vdW) interactions. The obtained agreement underscores the significant improvement provided by the account of vdW interactions, with remaining differences mainly attributed to the neglect of electronic screening at the metallic surface.

9.
Phys Rev Lett ; 102(17): 177405, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19518832

RESUMO

Systematic local spectroscopy of the affinity levels, by means of a scanning tunneling microscope, in highly ordered molecular semiconductor films of tetracene reveals strong energy level shifts by up to approximately 1.0 eV from molecule to molecule. This final state effect can be traced back to the site specificity of the polarization energy in organic materials with complex unit cells, caused by a combination of different molecular environments, the intrinsically anisotropic molecular polarizability, and the influence of the substrate.

10.
Phys Rev Lett ; 100(13): 136103, 2008 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-18517971

RESUMO

The organic semiconductor molecule 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) exhibits two adsorption states on the Ag(111) surface: one in a metastable disordered phase, prepared at low temperatures, the other in the long-range ordered monolayer phase obtained at room temperature. Notably, the two states differ substantial in their vertical bonding distances, intramolecular distortions, and electronic structures. The difference is explained by intermolecular interactions, which are particularly relevant for the long-range ordered phase, and which hence require attention.

11.
Nature ; 444(7117): 350-3, 2006 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-17108961

RESUMO

Thin films of molecular organic semiconductors are attracting much interest for use in electronic and optoelectronic applications. The electronic properties of these materials and their interfaces are therefore worth investigating intensively, particularly the degree of electron delocalization that can be achieved. If the delocalization is appreciable, it should be accompanied by an observable electronic band dispersion. But so far only limited experimental data on the intermolecular dispersion of electronic states in molecular materials is available, and the mechanism(s) of electron delocalization in molecular materials are also not well understood. Here we report scanning tunnelling spectroscopy observations of an organic monolayer film on a silver substrate, revealing a completely delocalized two-dimensional band state that is characterized by a metal-like parabolic dispersion with an effective mass of m* = 0.47m(e), where m(e) is the bare electron mass. This dispersion is far stronger than expected for the organic film alone, and arises as a result of strong substrate-mediated coupling between the molecules within the monolayer.

12.
J Phys Chem B ; 110(47): 23756-69, 2006 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-17125337

RESUMO

In investigations of the proteins which are responsible for the surface adhesion of the blue mussel Mytilus edulis, an unusually frequent appearance of the otherwise rare amino acid 3-(3,4-dihydroxyphenyl)-L-alanine (L-DOPA) has been observed. This amino acid is thought to play a major role in the mechanism of mussel adhesion. Here we report a detailed structural and spectroscopic investigation of the interface between L-DOPA and a single-crystalline Au(110) model surface, with the aim of understanding fundamentals about the surface bonding of this amino acid and its role in mussel adhesion. Molecular layers are deposited by organic molecular beam deposition (OMBD) in an ultrahigh-vacuum environment. The following experimental techniques have been applied: ex situ Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), low-energy electron diffraction (LEED), high-resolution electron energy loss spectroscopy (HREELS), and scanning tunneling microscopy (STM). Vibrational spectra of isolated L-DOPA molecules and the zwitterionic bulk have been calculated using density functional theory (DFT). The predicted modes are assigned to observed spectra, allowing conclusions regarding the molecule-substrate and molecule-molecule interactions at the L-DOPA/Au(110) interface. We find that zwitterionic L-DOPA forms a monochiral, one-domain commensurate monolayer on Au(110), with the catechol rings on top of [110] gold rows, oriented parallel to the surface. The (2 x 1)-Au(110) surface reconstruction is not lifted. The carboxylate group is found in a bidentate or bridging configuration, the amino group is tilted out of the surface plane, and the hydroxyl groups do not dehydrogenate on Au(110). Similar to the case for the bulk, molecules form dimers on Au(110). However, the number of hydrogen bridge bonds between L-DOPA molecules is reduced as compared to the bulk. Thicker layers which are deposited onto the commensurate interface do not order in the bulk structure. In conclusion, our study shows that the aromatic ring system of L-DOPA functions as a surface anchor. Since it is also known that the hydroxyl groups support cross-link reactions between L-DOPA residues in the mussel glue protein, we can conclude that the catechol ring supports surface adhesion of mussel proteins via two independent functions.


Assuntos
Aminoácidos/química , Ouro/química , Levodopa/química , Mytilus/fisiologia , Proteínas/química , Adesividade , Adesivos/química , Algoritmos , Animais , Sítios de Ligação , Catecóis/química , Reagentes de Ligações Cruzadas/química , Dimerização , Elétrons , Ligação de Hidrogênio , Microscopia , Mytilus/química , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...