Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Emerg Infect Dis ; 29(8): 1696-1698, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37379514

RESUMO

We detected highly pathogenic avian influenza A(H5N1) clade 2.3.4.4b virus in a domestic cat that lived near a duck farm infected by a closely related virus in France during December 2022. Enhanced surveillance of symptomatic domestic carnivores in contact with infected birds is recommended to prevent further spread to mammals and humans.


Assuntos
Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Influenza Humana , Humanos , Animais , Gatos , Virus da Influenza A Subtipo H5N1/genética , Aves , Patos , França/epidemiologia , Filogenia , Mamíferos
2.
Transbound Emerg Dis ; 69(6): 4028-4033, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36161777

RESUMO

During winter 2020-2021, France and other European countries were severely affected by highly pathogenic avian influenza H5 viruses of the Gs/GD/96 lineage, clade 2.3.4.4b. In total, 519 cases occurred, mainly in domestic waterfowl farms in Southwestern France. Analysis of viral genomic sequences indicated that 3 subtypes of HPAI H5 viruses were detected (H5N1, H5N3, H5N8), but most French viruses belonged to the H5N8 subtype genotype A, as Europe. Phylogenetic analyses of HPAI H5N8 viruses revealed that the French sequences were distributed in 9 genogroups, suggesting 9 independent introductions of H5N8 from wild birds, in addition to the 2 introductions of H5N1 and H5N3.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Aviária , Doenças das Aves Domésticas , Animais , Influenza Aviária/epidemiologia , Virus da Influenza A Subtipo H5N1/genética , Filogenia , Vírus da Influenza A/genética , Animais Selvagens , França/epidemiologia , Doenças das Aves Domésticas/epidemiologia
3.
Infect Genet Evol ; 104: 105356, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36038008

RESUMO

An H3N1 avian influenza virus was detected in a laying hens farm in May 2019 which had experienced 25% mortality in Northern France. The complete sequencing of this virus showed that all segment sequences belonged to the Eurasian lineage and were phylogenetically very close to many of the Belgian H3N1 viruses detected in 2019. The French virus presented two genetic particularities with NA and NS deletions that could be related to virus adaptation from wild to domestic birds and could increase virulence, respectively. Molecular data of H3N1 viruses suggest that these two deletions occurred at two different times.


Assuntos
Vírus da Influenza A , Influenza Aviária , Animais , Galinhas , Feminino , Vírus da Influenza A/genética , Filogenia
4.
Poult Sci ; 101(1): 101569, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34823166

RESUMO

In 2021, France faced large avian influenza outbreaks, like in 2016 and 2017. Controlling these outbreaks required the preventive depopulation of a large number of duck farms. A previous study in 2017 showed that the quality of decontamination of trucks and transport crates used for depopulation was often insufficient. A new study was then set up to evaluate cleaning and disinfection (C&D) of trucks and crates used for duck depopulation and whether practices had changed since 2017. Three methods were used to assess decontamination: 1) detection of avian influenza virus (AIV) genome, 2) visual inspection of cleanliness, and 3) microbial counts, considering that 2 and 3 are commonly used in abattoirs. Another objective of the study was to evaluate the correlation between results obtained with the 3 methods. In 5 abattoirs, 8 trucks and their crates were sampled by swabbing to detect AIV genome by rRT-PCR before and after decontamination. Visual cleanliness scores and coliform counts were also determined on crates after C&D. Trucks and crates were decontaminated according to the abattoirs' protocols. Before C&D, 3 quarters of crates (59/79) and 7 of 8 trucks were positive for AIV genome. C&D procedures were reinforced in 2021 compared to 2017; use of detergent solution and warm water were more common. Nevertheless, 28% of the crates were positive for AIV genome after C&D, despite the fact that cleaning scores and microbiological counts were satisfactory for 84% and 91% of the crates, respectively. No correlation was observed between results for AIV genome detection and results from visual control or from coliform counts. Abattoirs are encouraged to use environmental sampling coupled with AIV genome detection to monitor the quality of cleaning and disinfection of trucks and crates during AI outbreaks. Reinforcement of biosecurity measures at abattoirs is still needed to avoid residual contamination of the equipment and cross-contamination during the decontamination process.


Assuntos
Influenza Aviária , Animais , Biosseguridade , Galinhas , Surtos de Doenças/prevenção & controle , Surtos de Doenças/veterinária , Desinfecção , Influenza Aviária/epidemiologia , Influenza Aviária/prevenção & controle
5.
Pathogens ; 9(5)2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32365731

RESUMO

Since 2018, when a process hygiene criterion for Campylobacter in broilers at the slaughterhouse was implemented across Europe, efforts to reduce Campylobacter at farm level have increased. Despite numerous studies aiming to reduce Campylobacter colonization in broilers, no efficient control strategy has been identified so far. The present work assessed first the efficacy of a commercial litter treatment to reduce Campylobacter colonization in broilers during two in-vivo trials and second, its impact on cecal microbiota. The treatment does not affect broiler growth and no effect on Campylobacter counts was observed during the in-vivo trials. Nevertheless, cecal microbiota were affected by the treatment. Alpha and beta diversity were significantly different for the control and litter-treated groups on day 35. In addition, several taxa were identified as significantly associated with the different experimental groups. Further work is needed to find a suitable control measure combining different strategies in order to reduce Campylobacter.

6.
Environ Microbiol ; 19(6): 2164-2181, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28205313

RESUMO

Comprehension of the degradation of macroalgal polysaccharides suffers from the lack of genetic tools for model marine bacteria, despite their importance for coastal ecosystem functions. We developed such tools for Zobellia galactanivorans, an algae-associated flavobacterium that digests many polysaccharides, including alginate. These tools were used to investigate the biological role of AlyA1, the only Z. galactanivorans alginate lyase known to be secreted in soluble form and to have a recognizable carbohydrate-binding domain. A deletion mutant, ΔalyA1, grew as well as the wild type on soluble alginate but was deficient in soluble secreted alginate lyase activity and in digestion of and growth on alginate gels and algal tissues. Thus, AlyA1 appears to be essential for optimal attack of alginate in intact cell walls. alyA1 appears to have been recently acquired via horizontal transfer from marine Actinobacteria, conferring an adaptive advantage that might benefit other algae-associated bacteria by exposing new substrate niches. The genetic tools described here function in diverse members of the phylum Bacteroidetes and should facilitate analyses of polysaccharide degradation systems and many other processes in these common but understudied bacteria.


Assuntos
Alginatos/metabolismo , Flavobacteriaceae/genética , Flavobacteriaceae/metabolismo , Phaeophyceae/microbiologia , Polissacarídeo-Liases/genética , Biomassa , Parede Celular/metabolismo , Flavobacteriaceae/enzimologia , Flavobacteriaceae/crescimento & desenvolvimento , Ácido Glucurônico/metabolismo , Ácidos Hexurônicos/metabolismo , Polissacarídeo-Liases/metabolismo , Deleção de Sequência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...