Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Biochem ; 120(7): 11441-11453, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30746766

RESUMO

The function of fibroblast cells in wounded areas results in reconstruction of the extra cellular matrix and consequently resolution of granulation tissue. It is suggested that the use of platelet-rich plasma can accelerate the healing process in nonhealing or slow-healing wounds. In this study, a simple and novel method has been used to fabricate an electrospun three-layered scaffold containing plasma rich in growth factor with the aim of increasing the proliferation and migration of fibroblast cells in vitro. First, plasma rich in growth factor was derived from platelet rich plasma, and then a three-layered scaffold was fabricated using PLLA nanofibers as the outer layers and plasma rich in growth factor-containing gelatin fibers as the internal layer. The growth morphology of cells seeded on this scaffold was compared to those seeded on one layered PLLA scaffold. The study of the cell growth rate on different substrates and the migration of cells in response to the drug release of multilayered scaffold was investigated by the cell quantification assay and a modified under agarose assay. Scanning electron microscopy and fluorescence images showed that cells seeded on multilayered scaffold were completely oriented 72 hours after seeding compared to those seeded on PLLA scaffold. The cell quantification assay also indicated significant increase in proliferation rate of cells seeded on three-layered scaffold compared to those seeded on PLLA scaffold and finally, monitoring cell migration proved that cells migrate significantly toward the three-layered scaffold up to 48 to 72 hours and afterwards start to show a diminished migration rate toward this scaffold.

2.
J Cell Biochem ; 120(2): 1511-1521, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30171705

RESUMO

Among different tissues, endothelial/cardiac types require specific factors to promote myocardial regeneration after occurred injuries. Herein, cardiac stem cells (CSCs) as the major cell population that involved in cardiovascular repair were selected to study the role of polyethyleneimine (PEI) agent on endothelial differentiation. After preparation of electrospun network of PEI with polyacrylonitrile, the related characterizations were carried out including scanning electron microscope (SEM), field-emission SEM, water contact angle, Fourier transform infrared spectroscopy and mechanical properties. Also, the release kinetic of the corresponding agent was studied up to 7 days. The cell differentiation studies were done in the following with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay, Real-time polymerase chain reaction and immunostaining method. The whole obtained results approved the higher differentiation of CSCs into endothelial/cardiac cells. Finally, it is recommended that the PEI delivering increases the healing potency of CSCs and accordingly the regeneration speed of damaged cardiovascular tissue would be improved.

3.
Tissue Cell ; 51: 32-38, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29622085

RESUMO

Since ancient times, some herbal medicines have been extensively used for burn and wound treatments, showing preference to the common synthetic medications by virtue of having less side effects and faster healing rate. In this study, hybrid nanofibrous scaffolds of poly-l-lactic-acid (PLLA) and gelatin incorporated L. inermis were fabricated via electrospinning technique. Morphology and characteristics of the scaffolds were studied by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR), respectively. The release profile of the L. inermis from the nanofibers was also assessed in vitro. Moreover, the structural stability of the released L. inermis from the nanofibers was evaluated using high-performance liquid chromatography (HPLC). The nanofibers showed a gradual release of L. inermis up to two days while the intact structure was preserved. Furthermore, antibacterial assay demonstrated that L. inermis-loaded nanofibrous scaffolds could effectively kill E. coli and S. aureus within 2 h. Finally, biocompatibility of the nanofibers was proven on 3T3 fibroblasts. Therefore, the L. inermis loaded PLLA-Gelatin nanofibers showed a potential application as a wound dressing in order to control wound infections.


Assuntos
Anti-Infecciosos/farmacologia , Bandagens , Lawsonia (Planta) , Nanofibras , Infecção dos Ferimentos/prevenção & controle , Células 3T3 , Animais , Camundongos , Nanofibras/química , Poliésteres , Cicatrização/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...