Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38723927

RESUMO

Silicate-based bioactive glass nano/microspheres hold significant promise for bone substitution by facilitating osteointegration through the release of biologically active ions and the formation of a biomimetic apatite layer. Cu-doping enhances properties such as pro-angiogenic and antibacterial behavior. While sol-gel methods usually yield homogeneous spherical particles for pure silica or binary glasses, synthesizing poorly aggregated Cu-doped ternary glass nano/microparticles without a secondary CuO crystalline phase remains challenging. This article introduces an alternative method for fabricating Cu-doped ternary microparticles using sol-gel chemistry combined with spray-drying. The resulting microspheres exhibit well-defined, poorly aggregated particles with spherical shapes and diameters of a few microns. Copper primarily integrates into the microspheres as Cu0 nanoparticles and as Cu2+ within the amorphous network. This doping affects silica network connectivity, as calcium and phosphorus are preferentially distributed in the glass network (respectively as network modifiers and formers) or involved in amorphous calcium phosphate nano-domains depending on the doping rate. These differences affect the interaction with simulated body fluid. Network depolymerization, ion release (SiO44-, Ca2+, PO43-, Cu2+), and apatite nanocrystal layer formation are impacted, as well as copper release. The latter is mainly provided by the copper involved in the silica network and not from metal nanoparticles, most of which remain in the microspheres after interaction. This understanding holds promising implications for potential therapeutic applications, offering possibilities for both short-term and long-term delivery of a tunable copper dose. STATEMENT OF SIGNIFICANCE: A novel methodology, scalable to industrial levels, enables the synthesis of copper-doped ternary bioactive glass microparticles by combining spray-drying and sol-gel chemistry. It provides precise control over the copper percentage in microspheres. This study explores the influence of synthesis conditions on the copper environment, notably Cu0 and Cu2+ ratios, characterized by EPR spectroscopy, an aspect poorly described for copper-doped bioactive glass. Additionally, copper indirectly affects silica network connectivity and calcium/phosphorus distribution, as revealed by SSNMR. Multiscale characterization illustrates how these features impact acellular degradation in simulated body fluid, highlighting the therapeutic potential for customizable copper dosing to address short- and long-term needs.

2.
Bioengineering (Basel) ; 10(6)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37370665

RESUMO

Layered Double Hydroxides (LDHs) are inorganic compounds of relevance to various domains, where their surface reactivity and/or intercalation capacities can be advantageously exploited for the retention/release of ionic and molecular species. In this study, we have explored specifically the applicability in the field of bone regeneration of one LDH composition, denoted "MgFeCO3", of which components are already present in vivo, so as to convey a biocompatibility character. The propensity to be used as a bone substitute depends, however, on their ability to allow the fabrication of 3D constructs able to be implanted in bone sites. In this work, we display two appealing approaches for the processing of MgFeCO3 LDH particles to prepare (i) porous 3D scaffolds by freeze-casting, involving an alginate biopolymeric matrix, and (ii) pure MgFeCO3 LDH monoliths by Spark Plasma Sintering (SPS) at low temperature. We then explored the capacity of such LDH particles or monoliths to interact quantitatively with molecular moieties/drugs in view of their local release. The experimental data were complemented by computational chemistry calculations (Monte Carlo) to examine in more detail the mineral-organic interactions at play. Finally, preliminary in vitro tests on osteoblastic MG63 cells confirmed the high biocompatible character of this LDH composition. It was confirmed that (i) thermodynamically metastable LDH could be successfully consolidated into a monolith through SPS, (ii) the LDH particles could be incorporated into a polymer matrix through freeze casting, and (iii) the LDH in the consolidated monolith could incorporate and release drug molecules in a controlled manner. In other words, our results indicate that the MgFeCO3 LDH (pyroaurite structure) may be seen as a new promising compound for the setup of bone substitute biomaterials with tailorable drug delivery capacity, including for personalized medicine.

3.
Nanomaterials (Basel) ; 13(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36770480

RESUMO

Biomimetic apatites exhibit a high reactivity allowing ion substitutions to modulate their in vivo response. We developed a novel approach combining several bioactive ions in a spatially controlled way in view of subsequent releases to address the sequence of events occurring after implantation, including potential microorganisms' colonization. Innovative micron-sized core-shell particles were designed with an external shell enriched with an antibacterial ion and an internal core substituted with a pro-angiogenic or osteogenic ion. After developing the proof of concept, two ions were particularly considered, Ag+ in the outer shell and Cu2+ in the inner core. In vitro evaluations confirmed the cytocompatibility through Ag-/Cu-substituting and the antibacterial properties provided by Ag+. Then, these multifunctional "smart" particles were embedded in a polymeric matrix by freeze-casting to prepare 3D porous scaffolds for bone engineering. This approach envisions the development of a new generation of scaffolds with tailored sequential properties for optimal bone regeneration.

4.
J Funct Biomater ; 13(3)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36135579

RESUMO

Bone infections are a key health challenge with dramatic consequences for affected patients. In dentistry, periodontitis is a medically compromised condition for efficient dental care and bone grafting, the success of which depends on whether the surgical site is infected or not. Present treatments involve antibiotics associated with massive bacterial resistance effects, urging for the development of alternative antibacterial strategies. In this work, we established a safe-by-design bone substitute approach by combining bone-like apatite to peroxide ions close to natural in vivo oxygenated species aimed at fighting pathogens. In parallel, bone-like apatites doped with Ag+ or co-doped Ag+/peroxide were also prepared for comparative purposes. The compounds were thoroughly characterized by chemical titrations, FTIR, XRD, SEM, and EDX analyses. All doped apatites demonstrated significant antibacterial properties toward four major pathogenic bacteria involved in periodontitis and bone infection, namely Porphyromonas gingivalis (P. gingivalis), Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans), Fusobacterium nucleatum (F. nucleatum), and S. aureus. By way of complementary tests to assess protein adsorption, osteoblast cell adhesion, viability and IC50 values, the samples were also shown to be highly biocompatible. In particular, peroxidated apatite was the safest material tested, with the lowest IC50 value toward osteoblast cells. We then demonstrated the possibility to associate such doped apatites with two biocompatible polymers, namely gelatin and poly(lactic-co-glycolic) acid PLGA, to prepare, respectively, composite 2D membranes and 3D scaffolds. The spatial distribution of the apatite particles and polymers was scrutinized by SEM and µCT analyses, and their relevance to the field of bone regeneration was underlined. Such bio-inspired antibacterial apatite compounds, whether pure or associated with (bio)polymers are thus promising candidates in dentistry and orthopedics while providing an alternative to antibiotherapy.

5.
ACS Biomater Sci Eng ; 8(6): 2363-2374, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35533345

RESUMO

Amorphous calcium phosphate-based materials are of major interest in the field of bone substitution. Very recently, the low-temperature synthesis of a new family of amorphous calcium phosphate containing both orthophosphate and pyrophosphate ions in controlled proportions has been reported. Despite their interest, especially due to the biochemical role and the hydrolysis of pyrophosphate occurring in vivo, the behavior of such materials when interacting with aqueous media has never been described. Consequently, we herein report the in vitro acellular evolution of three compositions of mixed calcium ortho- and pyrophosphate amorphous materials including a different orthophosphate proportion. As a first step to assess the physicochemical reactivity of these amorphous materials, they were tested in two different media at 37 °C, acidified water and simulated body fluid solution, from 1 h up to 15 days. The results demonstrated that they were quite stable and that they progressively released part of their constitutive ions, highlighting their potential for controlled delivery of bioactive ions (calcium, orthophosphate, and pyrophosphate ions). In addition to these properties, we showed that the material with the highest ortho/(ortho + pyro) phosphate ratio started to crystallize into nanocrystalline apatite analogous to bone mineral within 2 days or 2 weeks depending on the medium. For the other material compositions, no layer of apatite was detected at their surface with SBF testing despite the favorable supersaturation indexes, crystallization being probably inhibited by pyrophosphate ions released in the medium. This varying apatite-forming ability emphasizes the key role of the ortho/(ortho + pyro) phosphate ratio of these materials in their in vitro reactivity and bioactivity, which paves the way for the development of this promising family of amorphous calcium phosphate materials with tunable physicochemical and biological properties.


Assuntos
Pirofosfato de Cálcio , Cálcio , Apatitas/química , Cálcio/química , Pirofosfato de Cálcio/química , Difosfatos , Fosfatos
6.
Acta Biomater ; 103: 333-345, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31881314

RESUMO

The development of amorphous phosphate-based materials is of major interest in the field of biomaterials science, and especially for bone substitution applications. In this context, we herein report the synthesis of gel-derived hydrated amorphous calcium/sodium ortho/pyrophosphate materials at ambient temperature and in water. For the first time, such materials have been obtained in a large range of tunable orthophosphate/pyrophosphate molar ratios. Multi-scale characterization was carried out thanks to various techniques, including advanced multinuclear solid state NMR. It allowed the quantification of each ionic/molecular species leading to a general formula for these materials: [(Ca2+y Na+z H+3+x-2y-z)(PO43-)1-x(P2O74-)x](H2O)u. Beyond this formula, the analyses suggest that these amorphous solids are formed by the aggregation of colloids and that surface water and sodium could play a role in the cohesion of the whole material. Although the full comprehension of mechanisms of formation and structure is still to be investigated in detail, the straightforward synthesis of these new amorphous materials opens up many perspectives in the field of materials for bone substitution and regeneration. STATEMENT OF SIGNIFICANCE: The metastability of amorphous phosphate-based materials with various chain length often improves their (bio)chemical reactivity. However, the control of the ratio of the different phosphate entities has not been yet described especially for small ions (pyrophosphate/orthophosphate) and using soft chemistry, whereas it opens the way for the tuning of enzyme- and/or pH-driven degradation and biological properties. Our study focuses on elaboration of amorphous gel-derived hydrated calcium/sodium ortho/pyrophosphate solids at 70 °C with a large range of orthophosphate/pyrophosphate ratios. Multi-scale characterization was carried out using various techniques such as advanced multinuclear SSNMR (31P, 23Na, 1H, 43Ca). Analyses suggest that these solids are formed by colloids aggregation and that the location of mobile water and sodium could play a role in the material cohesion.


Assuntos
Materiais Biocompatíveis/síntese química , Pirofosfato de Cálcio/síntese química , Química Inorgânica/métodos , Espectroscopia de Ressonância Magnética , Fósforo/análise , Análise Espectral Raman , Temperatura , Termogravimetria , Difração de Raios X
7.
ACS Biomater Sci Eng ; 5(11): 5906-5915, 2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33405681

RESUMO

Calcium is an essential component of osteogenesis and is often required for imparting significant bioactivity to synthetic bone substitutes and, in particular, silicate-based materials. However, the mechanism of calcium incorporation inside sol-gel silicates is poorly understood. In this work, we shed light on the determinant parameters for incorporation of calcium into acid-base-catalyzed sol-gel silicates at ambient temperature: increasing the pH above the isoelectric point of silicic acid and the nature of the calcium counterion in the calcium precursor are found to be the key. Based on our proposed reaction sequence, we were able to compare calcium precursors and select an ideal candidate compound for the synthesis of bioactive glasses (BG) and organic-inorganic hybrids at ambient temperature. Reproducible syntheses and gel times of SiO2-CaO BG were obtained using calcium hydroxide (CH), and we demonstrate its usability in the synthesis of promising BG-polycaprolactone hybrid scaffolds. BG and hybrids prepared with CH were able to form nanocrystalline nonstoichiometric apatite in simulated body fluid. The increased reliability of low-temperature syntheses associated with the use of a stable and inexpensive alkaline-earth precursor are major steps toward the translation of calcium silicate hybrids or other alkaline-earth silicates from bench to clinic.

8.
Acta Biomater ; 41: 320-7, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27221792

RESUMO

UNLABELLED: The development of bioactive phosphate-based glasses is essential in biomaterials science, and especially for bone substitution applications. In this context, the preparation of amorphous calcium-phosphorus hydroxide/oxide monoliths at low temperature is a key challenge for being able to develop novel hybrid materials for these applications. We herein report for the first time the synthesis and physical chemical characterisation of a novel family of pyrophosphate-based glasses (with the formula: {[(Ca(2+))1-x(H(+)/K(+))2x]2[(P2O7(4-))1-y(PO4(3-))4y/3]} n(H2O)), which were prepared by soft chemistry using low temperatures (T<70°C) and water as a solvent. The effect of the initial Ca/Pyrophosphate ratio on the structure and morphology of these pyrophosphate glasses was investigated in detail. Depending on this ratio, a glass (mixed calcium pyro- and orthophosphate) or a glass-ceramic (Ca10K4(P2O7)6·9H2O crystals embedded in the amorphous phase) was obtained. The proportion of the crystalline phase increased with an increase in the Ca/Pyrophosphate ratio in the batch solution. As expected for a glass, the formation of the glassy material was demonstrated not to be thermodynamically but rather kinetically driven, and the washing step was found to be crucial to prevent crystallisation. The stability of the amorphous phase was discussed considering the structural degrees of freedom of pyrophosphate entities, ionic strength of the initial solution and the inhibitory effect of orthophosphate ions. Overall, this new strategy of preparation of monolithic calcium-(pyro)phosphate based glasses using soft chemistry in water is highly promising in view of preparing new functional organic-inorganic hybrids for bone substitution applications. STATEMENT OF SIGNIFICANCE: Phosphate-based glasses have gradually emerged as a potential alternative to silicate bioactive glasses in order to induce different biological mechanisms of degradation. The synthesis of such monolithic glasses at low temperature is a key step to allow new inorganic glass compositions to be reached and hybrid materials to be prepared. Although sol-gel and coacervate methods (respectively orthophosphate and metaphosphate precursors) have already been described to prepare such glasses, the use of toxic solvents and/or the final temperature treatment associated to these processes could limit the use of these materials for biomedical applications and/or the further development of hybrids. It is shown here that pyrophosphate precursors are an alternative strategy to obtain monolithic calcium (pyro)phosphate glasses under soft conditions (water solvent, 70°C).


Assuntos
Pirofosfato de Cálcio/química , Química Inorgânica/métodos , Vidro/química , Análise Diferencial Térmica , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Varredura , Soluções , Eletricidade Estática , Termogravimetria
9.
J Phys Chem B ; 110(22): 10672-82, 2006 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-16771313

RESUMO

This paper presents a series of acidoswitchable NLO-phores combining the 9-methylbenzimidazolo[2,3-b]oxazolidine core with various pi systems such as phenylethenyl, phenylethynyl, and naphthylethenyl. All the prepared derivatives are shown to display acidochromic behavior at ambient temperature. The remarkable contrast in the NLO response along the reversible transformations observed in HRS experiments is rationalized by high level theoretical calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...