Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Photosynth Res ; 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37773575

RESUMO

Allophycocyanins are phycobiliproteins that absorb red light and transfer the energy to the reaction centers of oxygenic photosynthesis in cyanobacteria and red algae. Recently, it was shown that some allophycocyanins absorb far-red light and that one subset of these allophycocyanins, comprising subunits from the ApcD4 and ApcB3 subfamilies (FRL-AP), form helical nanotubes. The lowest energy absorbance maximum of the oligomeric ApcD4-ApcB3 complexes occurs at 709 nm, which is unlike allophycocyanin (AP; ApcA-ApcB) and allophycocyanin B (AP-B; ApcD-ApcB) trimers that absorb maximally at ~ 650 nm and ~ 670 nm, respectively. The molecular bases of the different spectra of AP variants are presently unclear. To address this, we structurally compared FRL-AP with AP and AP-B, performed spectroscopic analyses on FRL-AP, and leveraged computational approaches. We show that among AP variants, the α-subunit constrains pyrrole ring A of its phycocyanobilin chromophore to different extents, and the coplanarity of ring A with rings B and C sets a baseline for the absorbance maximum of the chromophore. Upon oligomerization, the α-chromophores of all AP variants exhibit a red shift of the absorbance maximum of ~ 25 to 30 nm and band narrowing. We exclude excitonic coupling in FRL-AP as the basis for this red shift and extend the results to discuss AP and AP-B. Instead, we attribute these spectral changes to a conformational alteration of pyrrole ring D, which becomes more coplanar with rings B and C upon oligomerization. This study expands the molecular understanding of light-harvesting attributes of phycobiliproteins and will aid in designing phycobiliproteins for biotechnological applications.

2.
Sci Adv ; 9(12): eadg0251, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36961897

RESUMO

To compete in certain low-light environments, some cyanobacteria express a paralog of the light-harvesting phycobiliprotein, allophycocyanin (AP), that strongly absorbs far-red light (FRL). Using cryo-electron microscopy and time-resolved absorption spectroscopy, we reveal the structure-function relationship of this FRL-absorbing AP complex (FRL-AP) that is expressed during acclimation to low light and that likely associates with chlorophyll a-containing photosystem I. FRL-AP assembles as helical nanotubes rather than typical toroids due to alterations of the domain geometry within each subunit. Spectroscopic characterization suggests that FRL-AP nanotubes are somewhat inefficient antenna; however, the enhanced ability to harvest FRL when visible light is severely attenuated represents a beneficial trade-off. The results expand the known diversity of light-harvesting proteins in nature and exemplify how biological plasticity is achieved by balancing resource accessibility with efficiency.


Assuntos
Clorofila , Cianobactérias , Clorofila/metabolismo , Microscopia Crioeletrônica , Clorofila A/metabolismo , Cianobactérias/metabolismo , Luz , Fotossíntese
3.
Microorganisms ; 10(6)2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35744716

RESUMO

In hyper-arid deserts, endolithic microbial communities survive in the pore spaces and cracks of rocks, an environment that enhances water retention and filters UV radiation. The rock colonization zone is enriched in far-red light (FRL) and depleted in visible light. This poses a challenge to cyanobacteria, which are the primary producers of endolithic communities. Many species of cyanobacteria are capable of Far-Red-Light Photoacclimation (FaRLiP), a process in which FRL induces the synthesis of specialized chlorophylls and remodeling of the photosynthetic apparatus, providing the ability to grow in FRL. While FaRLiP has been reported in cyanobacteria from various low-light environments, our understanding of light adaptations for endolithic cyanobacteria remains limited. Here, we demonstrated that endolithic Chroococcidiopsis isolates from deserts around the world synthesize chlorophyll f, an FRL-specialized chlorophyll when FRL is the sole light source. The metagenome-assembled genomes of these isolates encoded chlorophyll f synthase and all the genes required to implement the FaRLiP response. We also present evidence of FRL-induced changes to the major light-harvesting complexes of a Chroococcidiopsis isolate. These findings indicate that endolithic cyanobacteria from hyper-arid deserts use FRL photoacclimation as an adaptation to the unique light transmission spectrum of their rocky habitat.

4.
Front Microbiol ; 12: 704168, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220789

RESUMO

Chloracidobacterium is the first and until now the sole genus in the phylum Acidobacteriota (formerly Acidobacteria) whose members perform chlorophyll-dependent phototrophy (i.e., chlorophototrophy). An axenic isolate of Chloracidobacterium thermophilum (strain B T ) was previously obtained by using the inferred genome sequence from an enrichment culture and diel metatranscriptomic profiling analyses in situ to direct adjustments to the growth medium and incubation conditions, and thereby a defined growth medium for Chloracidobacterium thermophilum was developed. These advances allowed eight additional strains of Chloracidobacterium spp. to be isolated from microbial mat samples collected from Mushroom Spring, Yellowstone National Park, United States, at temperatures of 41, 52, and 60°C; an axenic strain was also isolated from Rupite hot spring in Bulgaria. All isolates are obligately photoheterotrophic, microaerophilic, non-motile, thermophilic, rod-shaped bacteria. Chloracidobacterium spp. synthesize multiple types of (bacterio-)chlorophylls and have type-1 reaction centers like those of green sulfur bacteria. Light harvesting is accomplished by the bacteriochlorophyll a-binding, Fenna-Matthews-Olson protein and chlorosomes containing bacteriochlorophyll c. Their genomes are approximately 3.7 Mbp in size and comprise two circular chromosomes with sizes of approximately 2.7 Mbp and 1.0 Mbp. Comparative genomic studies and phenotypic properties indicate that the nine isolates represent three species within the genus Chloracidobacterium. In addition to C. thermophilum, the microbial mats at Mushroom Spring contain a second species, tentatively named Chloracidobacterium aggregatum, which grows as aggregates in liquid cultures. The Bulgarian isolate, tentatively named Chloracidobacterium validum, will be proposed as the type species of the genus, Chloracidobacterium. Additionally, Chloracidobacterium will be proposed as the type genus of a new family, Chloracidobacteriaceae, within the order Blastocatellales, the class Blastocatellia, and the phylum Acidobacteriota.

5.
Microorganisms ; 10(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35056529

RESUMO

Strain MS-P2T was isolated from microbial mats associated with Mushroom Spring, an alkaline siliceous hot spring in Yellowstone National Park, WY, USA. The isolate grows chemoheterotrophically by oxygen-dependent respiration, and light stimulates photoheterotrophic growth under strictly oxic conditions. Strain MS-P2T synthesizes bacteriochlorophyll a and the carotenoid spirilloxanthin. However, photoautotrophic growth did not occur under oxic or anoxic conditions, suggesting that this strain should be classified as an aerobic anoxygenic phototrophic bacterium. Strain MS-P2T cells are motile, curved rods about 0.5 to 1.0 µm wide and 1.0 to 1.5 µm long. The optimum growth temperature is 45-50 °C, and the optimum pH for growth is circum-neutral (pH 7.0-7.5). Sequence analysis of the 16S rRNA gene revealed that strain MS-P2T is closely related to Elioraea species, members of the class Alphaproteobacteria, with a sequence identity of 96.58 to 98%. The genome of strain MS-P2T is a single circular DNA molecule of 3,367,643 bp with a mol% guanine-plus-cytosine content of 70.6%. Based on phylogenetic, physiological, biochemical, and genomic characteristics, we propose this bacteriochlorophyll a-containing isolate is a new species belonging to the genus Elioraea, with the suggested name Elioraeatepida. The type-strain is strain MS-P2T (= JCM33060T = ATCC TSD-174T).

6.
Curr Opin Plant Biol ; 37: 24-33, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28391049

RESUMO

Most cyanobacteria are obligate oxygenic photoautotrophs, and thus their growth and survival is highly dependent on effective utilization of incident light. Cyanobacteria have evolved a diverse set of phytochromes and cyanobacteriochromes (CBCRs) that allow cells to respond to light in the range from ∼300nm to ∼750nm. Together with associated response regulators, these photosensory proteins control many aspects of cyanobacterial physiology and metabolism. These include far-red light photoacclimation (FaRLiP), complementary chromatic acclimation (CCA), low-light photoacclimation (LoLiP), photosystem content and stoichiometry (long-term adaptation), short-term acclimation (state transitions), circadian rhythm, phototaxis, photomorphogenesis/development, and cellular aggregation. This minireview highlights some discoveries concerning phytochromes and CBCRs as well as two acclimation processes that improve light harvesting and energy conversion under specific irradiance conditions: FaRLiP and CCA.


Assuntos
Cianobactérias/metabolismo , Cianobactérias/efeitos da radiação , Luz , Proteínas de Bactérias/metabolismo , Ritmo Circadiano/efeitos da radiação , Fitocromo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA