Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 47(17): 4415-4418, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36048667

RESUMO

In this paper we experimentally demonstrate second-harmonic generation (SHG) enhancement in thin 1D periodic plasmonic nanostructures on GaAs in the infrared spectral range. Due to the properly designed coupling of horizontal Fabry-Perot nanoresonators that occurs inside these structures, the obtained conversion efficiencies go up to the 10-7 W-1 range. Moreover, we demonstrate that the engineering of the plasmonic nanoantenna dimensions on the same GaAs layer can lead to SHG enhancement for pump wavelengths ranging from 2.8 µm to 3.3 µm.

2.
Opt Lett ; 46(6): 1466-1469, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33720213

RESUMO

Metasurfaces able to concentrate light at various wavelengths are promising for enhancing nonlinear interactions. In this Letter, we experimentally demonstrate infrared second-harmonic generation (SHG) by a multi-resonant nanostructure. A 100 GaAs layer embedded in a metal-insulator-metal waveguide is shown to support various localized resonances. One resonance enhances the nonlinear polarization due to the transverse magnetic (TM)-polarized pump wavelength near 3.2µm, while another is set near the TE-polarized generated wavelength (1.6µm). The measured SHG efficiency is higher than 10-9W-1 for pump wavelengths ranging from 2.9 to 3.3µm, which agrees with theoretical computations. This is typically 4 orders of magnitude higher than the equivalent GaAs membrane.

3.
Opt Express ; 28(19): 27210-27222, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32988018

RESUMO

In the wake of the control of light at the sub-wavelength scale by nanoresonators, metasurfaces allowing strong field exaltations are an attractive platform to enhance nonlinear processes. Recently, high efficiency second harmonic and difference frequency generations were demonstrated in metasurfaces that generate a nonlinear polarization normal to the surface. Here, we introduce a mode matched resonator that is able to produce this particular nonlinear polarization in a layer of gallium arsenide associated with a gold metasurface. The nonlinear conversion mechanism is described as a two-step process in which efficiency is shown to yield a good colocalization and a strong enhancement of the pump fields, as well as a high extraction efficiency of the generated field. This mode-matched metasurface is able to reach a difference frequency generation (DFG) efficiency of 10-2W/W2. This opens a new paradigm where alternative nonlinear materials could be reintroduced in metasurfaces and yields even higher efficiency than high effective χ(2) structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...