Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36557797

RESUMO

Recently, a novel electrochemical regulation associated with a deposition/dissolution reaction on an electrode surface has been proven to show superiority in large-scale energy storage systems (ESSs). Hence, in the search for high-performance electrodes showcasing these novel regulations, we utilized a low-cost ZnO microsphere electrode to construct aqueous rechargeable batteries (ARBs) that supplied a harvestable and storable charge through electrochemical deposition/dissolution via a reversible manganese oxidation reaction (MOR)/manganese reduction reaction (MRR), respectively, induced by the inherent formation/dissolution of zinc basic sulfate in a mild aqueous electrolyte solution containing 2 M ZnSO4 and 0.2 M MnSO4.

2.
Nanomaterials (Basel) ; 11(8)2021 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-34443735

RESUMO

Aqueous rechargeable zinc ion batteries (ARZIBs) have gained wide interest in recent years as prospective high power and high energy devices to meet the ever-rising commercial needs for large-scale eco-friendly energy storage applications. The advancement in the development of electrodes, especially cathodes for ARZIB, is faced with hurdles related to the shortage of host materials that support divalent zinc storage. Even the existing materials, mostly based on transition metal compounds, have limitations of poor electrochemical stability, low specific capacity, and hence apparently low specific energies. Herein, NH4V4O10 (NHVO), a layered oxide electrode material with a uniquely mixed morphology of plate and belt-like particles is synthesized by a microwave method utilizing a short reaction time (~0.5 h) for use as a high energy cathode for ARZIB applications. The remarkable electrochemical reversibility of Zn2+/H+ intercalation in this layered electrode contributes to impressive specific capacity (417 mAh g-1 at 0.25 A g-1) and high rate performance (170 mAh g-1 at 6.4 A g-1) with almost 100% Coulombic efficiencies. Further, a very high specific energy of 306 Wh Kg-1 at a specific power of 72 W Kg-1 was achieved by the ARZIB using the present NHVO cathode. The present study thus facilitates the opportunity for developing high energy ARZIB electrodes even under short reaction time to explore potential materials for safe and sustainable green energy storage devices.

3.
Materials (Basel) ; 14(12)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200817

RESUMO

The design of zirconia-based scaffolds using conventional techniques for bone-regeneration applications has been studied extensively. Similar to dental applications, the use of three-dimensional (3D) zirconia-based ceramics for bone tissue engineering (BTE) has recently attracted considerable attention because of their high mechanical strength and biocompatibility. However, techniques to fabricate zirconia-based scaffolds for bone regeneration are in a stage of infancy. Hence, the biological activities of zirconia-based ceramics for bone-regeneration applications have not been fully investigated, in contrast to the well-established calcium phosphate-based ceramics for bone-regeneration applications. This paper outlines recent research developments and challenges concerning numerous three-dimensional (3D) zirconia-based scaffolds and reviews the associated fundamental fabrication techniques, key 3D fabrication developments and practical encounters to identify the optimal 3D fabrication technique for obtaining 3D zirconia-based scaffolds suitable for real-world applications. This review mainly summarized the articles that focused on in vitro and in vivo studies along with the fundamental mechanical characterizations on the 3D zirconia-based scaffolds.

4.
Mater Sci Eng C Mater Biol Appl ; 123: 111950, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33812579

RESUMO

For the formation of new bone in critical-sized bone defects, bioactive scaffolds with an interconnected porous network are necessary. Herein, we fabricated three-dimensional (3D) porous hybrid zirconia scaffolds to promote hybrid functionality, i.e., excellent mechanical properties and bioactive performance. Specifically, the 3D printed scaffolds were subjected to Zn-HA/glass composite coating on glass-infiltrated zirconia (ZC). In addition, to pertain the extracellular matrix of bone, biopolymer (alginate/gelatine) was embedded in a developed 3D construct (ZB and ZCB). A zirconia-printed scaffold (Z) group served as a control. The structural and mechanical properties of the constructed scaffolds were studied using essential characterization techniques. Furthermore, the biological performance of the designed scaffolds was tested by a sequence of in vitro cell tests, including the attachment, proliferation, and osteogenic differentiation of dental pulp cells (DPCs). The ZC and ZCB scaffolds exhibited 20% higher compression strength than the zirconia (Z) scaffolds. More importantly, the ZC constructs exhibited superior cell-adhesion, distribution, and osteogenic differentiation ability due to the synergistic effects of the composite coating. In addition, the biopolymer-embedded scaffolds (ZB, ZCB) showed an excellent biological and mechanical performance. Thus, our results suggest that the Zn-HA/glass composite-coated glass-infiltrated zirconia (ZC, ZCB) scaffolds are a dynamic approach to designing bioactive 3D scaffolds for the load-bearing bone regeneration applications.


Assuntos
Osteogênese , Engenharia Tecidual , Regeneração Óssea , Porosidade , Alicerces Teciduais , Zircônio
5.
Nano Lett ; 18(4): 2402-2410, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29570307

RESUMO

Owing to their safety and low cost, aqueous rechargeable Zn-ion batteries (ARZIBs) are currently more feasible for grid-scale applications, as compared to their alkali counterparts such as lithium- and sodium-ion batteries (LIBs and SIBs), for both aqueous and nonaqueous systems. However, the materials used in ARZIBs have a poor rate capability and inadequate cycle lifespan, serving as a major handicap for long-term storage applications. Here, we report vanadium-based Na2V6O16·3H2O nanorods employed as a positive electrode for ARZIBs, which display superior electrochemical Zn storage properties. A reversible Zn2+-ion (de)intercalation reaction describing the storage mechanism is revealed using the in situ synchrotron X-ray diffraction technique. This cathode material delivers a very high rate capability and high capacity retention of more than 80% over 1000 cycles, at a current rate of 40C (1C = 361 mA g-1). The battery offers a specific energy of 90 W h kg-1 at a specific power of 15.8 KW kg-1, enlightening the material advantages for an eco-friendly atmosphere.

6.
J Colloid Interface Sci ; 501: 133-141, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28448833

RESUMO

In the present study, a metal-organic framework (MOF) derived from a facile water-assisted green precipitation technique is employed to synthesize phase-pure cobalt vanadate (Co3V2O8, CVO) anode for lithium-ion battery (LIB) application. The material obtained by this eco-friendly method is systematically characterized using various techniques such as powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and N2 adsorption-desorption measurements. By using as an anode, an initial discharge capacity of 1640mAhg-1 and a reversible capacity of 1194mAhg-1 are obtained at the applied current densities after the 240th cycle (2Ag-1 for 200 cycles followed by 0.2Ag-1 for 40 cycles). Moreover, a reversible capacity as high as 962mAhg-1 is retained at high current densities even after 240 cycles (4Ag-1 for 200 cycles followed by 2Ag-1 for 40 cycles), revealing the long life stability of the electrode. Significantly, CVO anode composed of fine nanoparticles (NPs) registered a substantial rate performance and reversible specific capacities of 275, 390, 543 and 699mAhg-1 at high reversibly altered current densities of 10, 5, 2, and 1Ag-1, respectively.

7.
ACS Appl Mater Interfaces ; 8(13): 8546-53, 2016 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-26983348

RESUMO

Metal-organic framework (MOF)-based synthesis of battery electrodes has presntly become a topic of significant research interest. Considering the complications to prepare Co3V2O8 due to the criticality of its stoichiometric composition, we report on a simple MOF-based solvothermal synthesis of Co3V2O8 for use as potential anodes for lithium battery applications. Characterizations by X-ray diffraction, X-ray photoelectron spectroscopy, high resolution electron microscopy, and porous studies revealed that the phase pure Co3V2O8 nanoparticles are interconnected to form a sponge-like morphology with porous properties. Electrochemical measurements exposed the excellent lithium storage (∼1000 mAh g(-1) at 200 mA g(-1)) and retention properties (501 mAh g(-1) at 1000 mA g(-1) after 700 cycles) of the prepared Co3V2O8 electrode. A notable rate performance of 430 mAh g(-1) at 3200 mA g(-1) was also observed, and ex situ investigations confirmed the morphological and structural stability of this material. These results validate that the unique nanostructured morphology arising from the use of the ordered array of MOF networks is favorable for improving the cyclability and rate capability in battery electrodes. The synthetic strategy presented herein may provide solutions to develop phase pure mixed metal oxides for high-performance electrodes for useful energy storage applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...