Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Gene Ther ; 32(19-20): 1059-1075, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34494480

RESUMO

Recent advances in genome editing tools, especially novel developments in the clustered regularly interspaced short palindromic repeats associated to Cas9 nucleases (CRISPR/Cas9)-derived editing machinery, have revolutionized not only basic science but, importantly, also the gene therapy field. Their flexibility and ability to introduce precise modifications in the genome to disrupt or correct genes or insert expression cassettes in safe harbors in the genome underline their potential applications as a medicine of the future to cure many genetic diseases. In this review, we give an overview of the recent progress made by French researchers in the field of therapeutic genome editing, while putting their work in the general context of advances made in the field. We focus on recent hematopoietic stem cell gene editing strategies for blood diseases affecting the red blood cells or blood coagulation as well as lysosomal storage diseases. We report on a genome editing-based therapy for muscular dystrophy and the potency of T cell gene editing to increase anticancer activity of chimeric antigen receptor T cells to combat cancer. We will also discuss technical obstacles and side effects such as unwanted editing activity that need to be surmounted on the way toward a clinical implementation of genome editing. We propose here improvements developed today, including by French researchers to overcome the editing-related genotoxicity and improve editing precision by the use of novel recombinant nuclease-based systems such as nickases, base editors, and prime editors. Finally, a solution is proposed to resolve the cellular toxicity induced by the systems employed for gene editing machinery delivery.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Sistemas CRISPR-Cas/genética , Endonucleases/genética , Técnicas de Transferência de Genes , Terapia Genética
2.
Mol Ther ; 27(8): 1372-1388, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31253581

RESUMO

Myotonic dystrophy type 1 (DM1) is caused by a CTG repeat expansion located in the 3' UTR of the DMPK gene. Expanded DMPK transcripts aggregate into nuclear foci and alter the function of RNA-binding proteins, leading to defects in the alternative splicing of numerous pre-mRNAs. To date, there is no curative treatment for DM1. Here we investigated a gene-editing strategy using the CRISPR-Cas9 system from Staphylococcus aureus (Sa) to delete the CTG repeats in the human DMPK locus. Co-expression of SaCas9 and selected pairs of single-guide RNAs (sgRNAs) in cultured DM1 patient-derived muscle line cells carrying 2,600 CTG repeats resulted in targeted DNA deletion, ribonucleoprotein foci disappearance, and correction of splicing abnormalities in various transcripts. Furthermore, a single intramuscular injection of recombinant AAV vectors expressing CRISPR-SaCas9 components in the tibialis anterior muscle of DMSXL (myotonic dystrophy mouse line carrying the human DMPK gene with >1,000 CTG repeats) mice decreased the number of pathological RNA foci in myonuclei. These results establish the proof of concept that genome editing of a large trinucleotide expansion is feasible in muscle and may represent a useful strategy to be further developed for the treatment of myotonic dystrophy.


Assuntos
Edição de Genes , Miotonina Proteína Quinase/genética , RNA Nuclear , Expansão das Repetições de Trinucleotídeos , Processamento Alternativo , Animais , Sequência de Bases , Sistemas CRISPR-Cas , Núcleo Celular , Modelos Animais de Doenças , Imunofluorescência , Expressão Gênica , Marcação de Genes , Vetores Genéticos/genética , Humanos , Camundongos , Camundongos Knockout , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Miotônica/genética , Distrofia Miotônica/terapia , RNA Guia de Cinetoplastídeos , Transdução Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...