Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Proteomics ; 252: 104434, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-34818586

RESUMO

Understanding the mechanisms that endow a somatic cell with the ability to differentiate into a somatic embryo, which could result in numerous biotechnological applications, is still a challenge. The objective of this work was to identify some of the molecular and physiological mechanisms responsible for the acquisition of embryogenic competence during somatic embryogenesis in Carica papaya L. We performed a broad characterization of embryogenic (EC) and nonembryogenic calli (NEC) of using global and mitochondrial proteomic approaches, histomorphology, histochemistry, respiratory activity, and endogenous hormonal and hydrogen peroxide (H2O2) contents. EC and NEC presented remarkable differences in anatomical and histochemical characteristics, with EC showing a higher reactivity for the presence of proteins and neutral polysaccharides. Our results demonstrate that mitochondrial metabolism affects the embryogenic competence of C. papaya callus. The EC presented higher participation of alternative oxidase (AOX) enzymes, higher total cell respiration and presented a stronger accumulation of mitochondrial stress response proteins. Differential accumulation of auxin-responsive Gretchen Hagen 3 (GH3) family proteins in EC was related to a decrease in the content of free 2,4-dichlorophenoxyacetic acid (2,4-D). EC also showed higher endogenous H2O2 contents. H2O2 is a promising molecule for further investigation in differentiation protocols for C. papaya somatic embryos. SIGNIFICANCE: To further advance the understanding of somatic embryogenesis, we performed a broad characterization of embryogenic and nonembryogenic callus, through global and mitochondrial proteomic approaches, histomorphology, histochemistry, respiratory activity, and endogenous hormonal and hydrogen peroxide contents. Based on these results, we propose a working model for the competence of papaya callus. This model suggests that GH3 proteins play an important role in the regulation of auxins. In addition, embryogenic callus showed a greater abundance of stress response proteins and folding proteins. Embryogenic callus respiration occurs predominantly via AOX, and the inhibition of its activity is capable of inhibiting callus differentiation. Although the embryogenic callus presented greater total respiration and a greater abundance of oxidative phosphorylation proteins, they had less COX participation and less coupling efficiency, indicating less ATP production.


Assuntos
Carica , Proteômica , Desenvolvimento Embrionário , Peróxido de Hidrogênio , Proteômica/métodos
2.
Biochim Biophys Acta Proteins Proteom ; 1868(12): 140529, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32853775

RESUMO

The light spectrum quality is an important signal for plant growth and development. We evaluated the effects of different light spectra on the in vitro shoot development of Cedrela fissilis and its proteomic and polyamine (PA) profiles. Cotyledonary and apical nodal segments were grown under different light emitting diodes (LED) and fluorescent lamps. Shoots from cotyledonary nodal segments cultured with 6-benzyladenine (BA) that were grown under WmBdR LED showed increased length and higher fresh and dry matter compared to shoots grown under fluorescent lamps. A nonredundant protein databank generated by transcriptome sequencing and the de novo assembly of C. fissilis improved, and almost doubled, the protein identification compared to a Citrus sinensis databank. A total of 616 proteins were identified, with 23 up- and 103 down-accumulated in the shoots under WmBdR LEDs compared to fluorescent lamps. Most differentially accumulated proteins in shoots grown under the WmBdR LED lamp treatment compared to the fluorescent lamp treatment are involved in responding to metabolic processes, stress, biosynthetic and cellular protein modifications, and light stimulus processes. Among the proteins, the up-accumulation of argininosuccinate synthase was associated with an increase in the free putrescine content and, consequently, with higher shoot elongation under WmBdR LED. The down-accumulation of calreticulin, heat shock proteins, plastid-lipid-associated protein, ubiquitin-conjugating enzymes, and ultraviolet-B receptor UVR8 isoform X1 could be related to the longer shoot length noted under LED treatment. This study provides important data related to the effects of the light spectrum quality on in vitro morphogenesis through the modulation of specific proteins and free putrescine biosynthesis in C. fissilis, an endangered wood species from the Brazilian Atlantic Forest of economic and ecological relevance. The nonredundant protein databank of C. fissilis is available via ProteomeXchange under identifier PXD018020.


Assuntos
Cedrela/fisiologia , Cedrela/efeitos da radiação , Luz , Brotos de Planta/fisiologia , Brotos de Planta/efeitos da radiação , Poliaminas/metabolismo , Proteoma/efeitos da radiação , Cedrela/crescimento & desenvolvimento , Germinação , Espectrometria de Massas , Desenvolvimento Vegetal/efeitos da radiação , Brotos de Planta/crescimento & desenvolvimento , Proteômica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA