Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Stem Cells ; 16(4): 425-437, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37643763

RESUMO

Obesity, which continues to increase worldwide, was shown to irreversibly impair the differentiation potential and angiogenic properties of adipose tissue mesenchymal stromal cells (ADSCs). Because these cells are intended for regenerative medicine, especially for the treatment of inflammatory conditions, and the effects of obesity on the immunomodulatory properties of ADSCs are not yet clear, here we investigated how ADSCs isolated from former obese subjects (Ex-Ob) would influence macrophage differentiation and polarization, since these cells are the main instructors of inflammatory responses. Analysis of the subcutaneous adipose tissue (SAT) of overweight (OW) and Ex-Ob subjects showed the maintenance of approximately twice as many macrophages in Ex-Ob SAT, contained within the CD68+/FXIII-A- inflammatory pool. Despite it, in vitro, coculture experiments revealed that Ex-Ob ADSCs instructed monocyte differentiation into a M2-like profile, and under inflammatory conditions induced by LPS treatment, inhibited HLA-DR upregulation by resting M0 macrophages, originated a similar percentage of TNF-α+ cells, and inhibited IL-10 secretion, similar to OW-ADSCs and BMSCs, which were used for comparison, as these are the main alternative cell types available for therapeutic purposes. Our results showed that Ex-Ob ADSCs mirrored OW-ADSCs in macrophage education, favoring the M2 immunophenotype and a mixed (M1/M2) secretory response. These results have translational potential, since they provide evidence that ADSCs from both Ex-Ob and OW subjects can be used in regenerative medicine in eligible therapies. Further in vivo studies will be fundamental to validate these observations.

2.
J Inflamm (Lond) ; 16: 18, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31346322

RESUMO

BACKGROUND: Caused by Mycobacterium tuberculosis, tuberculosis (TB) is an extremely contagious disease predominantly affecting the lungs. TB is found worldwide and has a major impact on public health safety primarily due to its high mortality rate. Applied for over a hundred years as a preventive measure, Mycobacterium bovis BCG remains the only available TB vaccine. Only one seminal study about the apoptotic pathways induced by this vaccine in the monocytic lineage of the host cell has found the effects of BCG on regulation of apoptosis. The aim of this study was to explore beyond that pioneer study the pathway related to the in vitro cell-death pattern and the inflammatory response to the BCG vaccine in human monocytes. METHODS: Cohorts of HIV-negative volunteers were enrolled: adult Healthy Donors (HD) and neonates' Umbilical Cord Blood (UCB) individuals. Host mononuclear cells were infected with the M. bovis Moreau strain of BCG vaccine at 16, 24, 48, and 72 h. The Real-Time RT-PCR for TRADD, Bcl-2, and Caspases-1 and -3 were performed, and supernatants were assayed in parallel for Caspase-1, NLRP3, HO-1, and IL-1ß levels whereas caspases were assessed intracellularly. The effect of a BCG infection in monocytes was characterized via a metabolic activity assay by LDH release profiles. RESULTS: Overall, the BCG vaccine induced significantly higher Caspase-1 and Bcl-2 mRNA levels in both the HD and UCB groups (p-value ≤0.05). In addition, a significant increase solely in Caspase-1 protein levels was also noted in both HD and UCB (p-value ≤0.05) notwithstanding the absence of any damaged cell membranes. CONCLUSIONS: Our data directly corroborate other findings showing that BCG Moreau led to an increased secretion of IL-1ß but not IL-18, two Caspase-1-activated cytokines, and are also in support of the model that the BCG Moreau infection of human mononuclear cells may induce a cell-death pattern involving Caspase-1 activation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...