Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(16): 168201, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37925690

RESUMO

The elastic Leidenfrost effect occurs when a vaporizable soft solid is lowered onto a hot surface. Evaporative flow couples to elastic deformation, giving spontaneous bouncing or steady-state floating. The effect embodies an unexplored interplay between thermodynamics, elasticity, and lubrication: despite being observed, its basic theoretical description remains a challenge. Here, we provide a theory of elastic Leidenfrost floating. As weight increases, a rigid solid sits closer to the hot surface. By contrast, we discover an elasticity-dominated regime where the heavier the solid, the higher it floats. This geometry-governed behavior is reminiscent of the dynamics of large liquid Leidenfrost drops. We show that this elastic regime is characterized by Hertzian behavior of the solid's underbelly and derive how the float height scales with materials parameters. Introducing a dimensionless elastic Leidenfrost number, we capture the crossover between rigid and Hertzian behavior. Our results provide theoretical underpinning for recent experiments, and point to the design of novel soft machines.

2.
Opt Lett ; 48(8): 1982-1985, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37058622

RESUMO

We report that equidistant 1D arrays of thin-film lithium niobate nano-waveguides generically support topological edge states. Unlike conventional coupled-waveguide topological systems, the topological properties of these arrays are dictated by the interplay between intra- and inter-modal couplings of two families of guided modes with different parities. Exploiting two modes within the same waveguide to design a topological invariant allows us to decrease the system size by a factor of two and substantially simplify the structure. We present two example geometries where topological edge states of different types (based on either quasi-TE or quasi-TM modes) can be observed within a wide range of wavelengths and array spacings.

3.
Phys Rev E ; 108(6-1): 064609, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38243431

RESUMO

Stress-strain constitutive relations in solids with an internal angular degree of freedom can be modeled using Cosserat (also called micropolar) elasticity. In this paper, we explore Cosserat materials that include chiral active components and hence odd elasticity. We calculate static elastic properties and show that the static response to rotational stresses leads to strains that depend on both Cosserat and odd elasticity. We compute the dispersion relations in odd Cosserat materials in the overdamped regime and find the presence of exceptional points. These exceptional points create a sharp boundary between a Cosserat-dominated regime of complete wave attenuation and an odd-elasticity-dominated regime of propagating waves. We conclude by showing the effect of Cosserat and odd-elasticity terms on the polarization of Rayleigh surface waves.

4.
Sci Adv ; 8(51): eadd3522, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36542705

RESUMO

Topological states enable robust transport within disorder-rich media through integer invariants inextricably tied to the transmission of light, sound, or electrons. However, the challenge remains to exploit topological protection in a length-scalable platform such as optical fiber. We demonstrate, through both modeling and experiment, optical fiber that hosts topological supermodes across multiple light-guiding cores. We directly measure the photonic winding number invariant characterizing the bulk and observe topological guidance of visible light over meter length scales. Furthermore, the mechanical flexibility of fiber allows us to reversibly reconfigure the topological state. As the fiber is bent, we find that the edge states first lose their localization and then become relocalized because of disorder. We envision fiber as a scalable platform to explore and exploit topological effects in photonic networks.

5.
Nature ; 607(7918): 246-247, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35831592
6.
Sci Adv ; 8(10): eabk3079, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35275714

RESUMO

Active solids consume energy to allow for actuation, shape change, and wave propagation not possible in equilibrium. Whereas active interfaces have been realized across many experimental systems, control of three-dimensional (3D) bulk materials remains a challenge. Here, we develop continuum theory and microscopic simulations that describe a 3D soft solid whose boundary experiences active surface stresses. The competition between active boundary and elastic bulk yields a broad range of previously unexplored phenomena, which are demonstrations of so-called active elastocapillarity. In contrast to thin shells and vesicles, we discover that bulk 3D elasticity controls snap-through transitions between different anisotropic shapes. These transitions meet at a critical point, allowing a universal classification via Landau theory. In addition, the active surface modifies elastic wave propagation to allow zero, or even negative, group velocities. These phenomena offer robust principles for programming shape change and functionality into active solids, from robotic metamaterials down to shape-shifting nanoparticles.

7.
mBio ; 12(6): e0154221, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34724813

RESUMO

Chirality is ubiquitous in nature, with consequences at the cellular and tissue scales. As Escherichia coli colonies expand radially, an orthogonal component of growth creates a pinwheel-like pattern that can be revealed by fluorescent markers. To elucidate the mechanistic basis of this colony chirality, we investigated its link to left-handed, single-cell twisting during E. coli elongation. While chemical and genetic manipulation of cell width altered single-cell twisting handedness, colonies ceased to be chiral rather than switching handedness, and anaerobic growth altered colony chirality without affecting single-cell twisting. Chiral angle increased with increasing temperature even when growth rate decreased. Unifying these findings, we discovered that colony chirality was associated with the propensity for cell filamentation. Inhibition of cell division accentuated chirality under aerobic growth and generated chirality under anaerobic growth. Thus, regulation of cell division is intrinsically coupled to colony chirality, providing a mechanism for tuning macroscale spatial patterning. IMPORTANCE Chiral objects, such as amino acids, are distinguishable from their mirror image. For living systems, the fundamental mechanisms relating cellular handedness to chirality at the multicellular scale remain largely mysterious. Here, we use chemical, genetic, and environmental perturbations of Escherichia coli to investigate whether pinwheel patterns in bacterial colonies are directly linked to single-cell growth behaviors. We discover that chirality can be abolished without affecting single-cell twisting; instead, the degree of chirality was linked to the proportion of highly elongated cells at the colony edge. Inhibiting cell division boosted the degree of chirality during aerobic growth and even introduced chirality to otherwise achiral colonies during anaerobic growth. These findings reveal a fascinating connection between cell division and macroscopic colony patterning.


Assuntos
Escherichia coli/química , Escherichia coli/crescimento & desenvolvimento , Anaerobiose , Fenômenos Biomecânicos , Divisão Celular , Parede Celular/química , Parede Celular/metabolismo , Escherichia coli/metabolismo , Estereoisomerismo
8.
Phys Rev E ; 104(1-1): 014603, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34412316

RESUMO

Chiral edge states can transmit energy along imperfect interfaces in a topologically robust and unidirectional manner when protected by bulk-boundary correspondence. However, in continuum systems, the number of states at an interface can depend on boundary conditions. Here we design interfaces that host a net flux of the number of modes into a region, trapping incoming energy. As a realization, we present a model system of two topological fluids composed of counter-spinning particles, which are separated by a boundary that transitions from a fluid-fluid interface into a no-slip wall. In these fluids, chiral edge states disappear, which implies non-Hermiticity and leads to an interplay between topology and energy dissipation. Solving the fluid equations of motion, we find explicit expressions for the disappearing modes. We then conclude that energy dissipation is sped up by mode trapping. Instead of making efficient waveguides, our paper shows how topology can be exploited for applications towards acoustic absorption, shielding, and soundproofing.

9.
Phys Rev E ; 104(6): L062602, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35030849

RESUMO

Odd materials feature antisymmetric response to perturbations. This anomalous property can stem from the nonequilibrium activity of their components, which is sustained by an external energy supply. These materials open the door to designing innovative engines which extract work by applying cyclic deformations, without any equivalent in equilibrium. Here, we reveal that the efficiency of such energy conversion, from local activity to macroscopic work, can be arbitrarily close to unity when the cycles of deformation are properly designed. We illustrate these principles in some canonical viscoelastic materials, which leads us to identify strategies for optimizing power and efficiency according to material properties and to delineate guidelines for the design of more complex odd engines.

10.
Phys Rev E ; 101(5-1): 052606, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32575189

RESUMO

At equilibrium, the structure and response of ordered phases are typically determined by the spontaneous breaking of spatial symmetries. Out of equilibrium, spatial order itself can become a dynamically emergent concept. In this article, we show that spatially anisotropic viscous coefficients and stresses can be designed in a far-from-equilibrium fluid by applying to its constituents a time-modulated drive. If the drive induces a rotation whose rate is slowed down when the constituents point along specific directions, then anisotropic structures and mechanical responses arise at long timescales. We demonstrate that the viscous response of such two-dimensional anisotropic driven fluids can acquire a tensorial, dissipationless component called anisotropic odd (or Hall) viscosity. Classical fluids with internal torques can display additional components of the odd viscosity neglected in previous studies of quantum Hall fluids that assumed angular momentum conservation. We show that, unlike their isotropic counterparts, these anisotropic and angular momentum-violating odd-viscosity coefficients can change even the bulk flow of an incompressible fluid by acting as a source of vorticity. In addition, shear distortions in the shape of an inclusion result in torques. We derive how the odd-viscous coefficients depend on the nonlinear, dissipative response of a fluid of rotating rods, i.e., odd viscosity is not simply given by angular momentum density.

11.
Nat Commun ; 10(1): 5406, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31776334

RESUMO

Understanding and controlling self-assembly processes at multiple length scales is vital if we are to design and create advanced materials. In particular, our ability to organise matter on the nanoscale has advanced considerably, but still lags far behind our skill in manipulating individual molecules. New tools allowing controlled nanoscale assembly are sorely needed, as well as the physical understanding of how they work. Here, we report such a method for the production of highly anisotropic nanoparticles with controlled dimensions based on a morphological transformation process (MORPH, for short) driven by the formation of supramolecular bonds. We present a minimal physical model for MORPH that suggests a general mechanism which is potentially applicable to a large number of polymer/nanoparticle systems. We envision MORPH becoming a valuable tool for controlling nanoscale self-assembly, and for the production of functional nanostructures for diverse applications.

12.
Phys Rev Lett ; 122(12): 128001, 2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30978035

RESUMO

Fluids in which both time reversal and parity are broken can display a dissipationless viscosity that is odd under each of these symmetries. Here, we show how this odd viscosity has a dramatic effect on topological sound waves in fluids, including the number and spatial profile of topological edge modes. Odd viscosity provides a short-distance cutoff that allows us to define a bulk topological invariant on a compact momentum space. As the sign of odd viscosity changes, a topological phase transition occurs without closing the bulk gap. Instead, at the transition point, the topological invariant becomes ill defined because momentum space cannot be compactified. This mechanism is unique to continuum models and can describe fluids ranging from electronic to chiral active systems.

13.
Phys Rev Lett ; 122(11): 118001, 2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-30951337

RESUMO

Topological quantum and classical materials can exhibit robust properties that are protected against disorder, for example, for noninteracting particles and linear waves. Here, we demonstrate how to construct topologically protected states that arise from the combination of strong interactions and thermal fluctuations inherent to soft materials or miniaturized mechanical structures. Specifically, we consider fluctuating lines under tension (e.g., polymer or vortex lines), subject to a class of spatially modulated substrate potentials. At equilibrium, the lines acquire a collective tilt proportional to an integer topological invariant called the Chern number. This quantized tilt is robust against substrate disorder, as verified by classical Langevin dynamics simulations. This robustness arises because excitations in this system of thermally fluctuating lines are gapped by virtue of interline interactions. We establish the topological underpinning of this pattern via a mapping that we develop between the interacting-lines system and a hitherto unexplored generalization of Thouless pumping to imaginary time. Our work points to a new class of classical topological phenomena in which the topological signature manifests itself in a structural property observed at finite temperature rather than a transport measurement.

14.
Phys Rev E ; 98(2-1): 020501, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30253612

RESUMO

When a swollen, thermoresponsive polymer gel is heated in a solvent bath, it expels solvent and deswells. When this heating is slow, deswelling proceeds homogeneously, as observed in a toroid-shaped gel that changes volume while maintaining its toroidal shape. By contrast, if the gel is heated quickly, an impermeable layer of collapsed polymer forms and traps solvent within the gel, arresting the volume change. The ensuing evolution of the gel then happens at fixed volume, leading to phase separation and the development of inhomogeneous stress that deforms the toroidal shape. We observe that this stress can cause the torus to buckle out of the plane, via a mechanism analogous to the bending of bimetallic strips upon heating. Our results demonstrate that thermodynamic instabilities, i.e., phase transitions, can be used to actuate mechanical deformation in an extreme thermodynamics of materials.

15.
Proc Natl Acad Sci U S A ; 115(3): 489-494, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29284745

RESUMO

Topological states can be used to control the mechanical properties of a material along an edge or around a localized defect. The rigidity of elastic networks is characterized by a topological invariant called the polarization; materials with a well-defined uniform polarization display a dramatic range of edge softness depending on the orientation of the polarization relative to the terminating surface. However, in all 3D mechanical metamaterials proposed to date, the topological modes are mixed with bulk soft modes, which organize themselves in Weyl loops. Here, we report the design of a 3D topological metamaterial without Weyl lines and with a uniform polarization that leads to an asymmetry between the number of soft modes on opposing surfaces. We then use this construction to localize topological soft modes in interior regions of the material by including defect lines-dislocation loops-that are unique to three dimensions. We derive a general formula that relates the difference in the number of soft modes and states of self-stress localized along the dislocation loop to the handedness of the vector triad formed by the lattice polarization, Burgers vector, and dislocation-line direction. Our findings suggest a strategy for preprogramming failure and softness localized along lines in 3D, while avoiding extended soft Weyl modes.

16.
Phys Rev Lett ; 119(19): 195502, 2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-29219513

RESUMO

Mechanical strain can lead to a synthetic gauge field that controls the dynamics of electrons in graphene sheets as well as light in photonic crystals. Here, we show how to engineer an analogous synthetic gauge field for lattice vibrations. Our approach relies on one of two strategies: shearing a honeycomb lattice of masses and springs or patterning its local material stiffness. As a result, vibrational spectra with discrete Landau levels are generated. Upon tuning the strength of the gauge field, we can control the density of states and transverse spatial confinement of sound in the metamaterial. We also show how this gauge field can be used to design waveguides in which sound propagates with robustness against disorder as a consequence of the change in topological polarization that occurs along a domain wall. By introducing dissipation, we can selectively enhance the domain-wall-bound topological sound mode, a feature that may potentially be exploited for the design of sound amplification by stimulated emission of radiation (SASER, the mechanical analogs of lasers).

17.
Nat Commun ; 8(1): 1573, 2017 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-29146894

RESUMO

We study the hydrodynamics of fluids composed of self-spinning objects such as chiral grains or colloidal particles subject to torques. These chiral active fluids break both parity and time-reversal symmetries in their non-equilibrium steady states. As a result, the constitutive relations of chiral active media display a dissipationless linear-response coefficient called odd (or equivalently, Hall) viscosity. This odd viscosity does not lead to energy dissipation, but gives rise to a flow perpendicular to applied pressure. We show how odd viscosity arises from non-linear equations of hydrodynamics with rotational degrees of freedom, once linearized around a non-equilibrium steady state characterized by large spinning speeds. Next, we explore odd viscosity in compressible fluids and suggest how our findings can be tested in the context of shock propagation experiments. Finally, we show how odd viscosity in weakly compressible chiral active fluids can lead to density and pressure excess within vortex cores.

18.
Artigo em Inglês | MEDLINE | ID: mdl-26465410

RESUMO

We study a liquid of zigzagging two-dimensional directed polymers with bending rigidity, i.e., polymers whose conformations follow checkerboard paths. In the continuum limit the statistics of such polymers obey the Dirac equation for particles of imaginary mass. We exploit this observation to investigate a liquid of these polymers via a quantum many-fermion analogy. A self-consistent approximation predicts a phase of tilted order, in which the polymers may develop a preference to zig rather than zag. We compute the phase diagram and key response functions for the polymer liquid, and comment on the role played by fluctuations.

19.
Soft Matter ; 11(41): 8092-9, 2015 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-26337680

RESUMO

Macroscopic properties of suspensions, such as those composed of globular particles (e.g., colloidal or macromolecular), can be tuned by controlling the equilibrium aggregation of the particles. We examine how aggregation - and, hence, macroscopic properties - can be controlled in a system composed of both globular particles and long, flexible polymer chains that reversibly bind to one another. We base this on a minimal statistical mechanical model of a single aggregate in which the polymer chain is treated either as ideal or self-avoiding, and, in addition, the globular particles are taken to interact with one another via excluded volume repulsion. Furthermore, each of the globular particles is taken to have one single site to which at most one polymer segment may bind. Within the context of this model, we examine the statistics of the equilibrium size of an aggregate and, thence, the structure of dilute and semidilute suspensions of these aggregates. We apply the model to biologically relevant aggregates, specifically those composed of macromolecular proteoglycan globules and long hyaluronan polymer chains. These aggregates are especially relevant to the materials properties of cartilage and the structure-function properties of perineuronal nets in brain tissue, as well as the pericellular coats of mammalian cells.


Assuntos
Polímeros/química , Ácido Hialurônico/química , Proteoglicanas/química , Termodinâmica
20.
Phys Rev Lett ; 114(9): 098303, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25793859

RESUMO

We study ionic microgel suspensions composed of swollen particles for various single-particle stiffnesses. We measure the osmotic pressure π of these suspensions and show that it is dominated by the contribution of free ions in solution. As this ionic osmotic pressure depends on the volume fraction of the suspension ϕ, we can determine ϕ from π, even at volume fractions so high that the microgel particles are compressed. We find that the width of the fluid-solid phase coexistence, measured using ϕ, is larger than its hard-sphere value for the stiffer microgels that we study and progressively decreases for softer microgels. For sufficiently soft microgels, the suspensions are fluidlike, irrespective of volume fraction. By calculating the dependence on ϕ of the mean volume of a microgel particle, we show that the behavior of the phase-coexistence width correlates with whether or not the microgel particles are compressed at the volume fractions corresponding to fluid-solid phase coexistence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...