Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2562: 335-349, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36272086

RESUMO

Clustered regularly interspaced short palindromic repeats (CRISPR) is a powerful tool that enables editing of the axolotl genome. In this chapter, we will cover how to retrieve gene sequences, confirm annotation, design CRISPR targets, analyze indels, and screen for Crispant axolotls. This is a comprehensive guide on how to use CRISPR on your favorite gene and gain insights into its function.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Sistemas CRISPR-Cas/genética , Ambystoma mexicanum/genética , Genoma , Mutação , RNA Guia de Sistemas CRISPR-Cas/genética
2.
Int J Dev Biol ; 64(10-11-12): 485-494, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33200809

RESUMO

Axolotls and other salamanders have the capacity to regenerate lost tissue after an amputation or injury. Growth and morphogenesis are coordinated within cell groups in many contexts by the interplay of transcriptional networks and biophysical properties such as ion flows and voltage gradients. It is not, however, known whether regulators of a cell's ionic state are involved in limb patterning at later stages of regeneration. Here we manipulated expression and activities of ion channels and gap junctions in vivo, in axolotl limb blastema cells. Limb amputations followed by retroviral infections were performed to drive expression of a human gap junction protein Connexin 26 (Cx26), potassium (Kir2.1-Y242F and Kv1.5) and sodium (NeoNav1.5) ion channel proteins along with EGFP control. Skeletal preparation revealed that overexpressing Cx26 caused syndactyly, while overexpression of ion channel proteins resulted in digit loss and structural abnormalities compared to EGFP expressing control limbs. Additionally, we showed that exposing limbs to the gap junction inhibitor lindane during the regeneration process caused digit loss. Our data reveal that manipulating native ion channel and gap junction function in blastema cells results in patterning defects involving the number and structure of the regenerated digits. Gap junctions and ion channels have been shown to mediate ion flows that control the endogenous voltage gradients which are tightly associated with the regulation of gene expression, cell cycle progression, migration, and other cellular behaviors. Therefore, we postulate that mis-expression of these channels may have disturbed this regulation causing uncoordinated cell behavior which results in morphological defects.


Assuntos
Conexinas/metabolismo , Extremidades/fisiologia , Canais Iônicos/metabolismo , Regeneração , Ambystoma mexicanum , Animais , Padronização Corporal , Conexina 26/metabolismo , Conexinas/genética , Junções Comunicantes/efeitos dos fármacos , Regulação da Expressão Gênica , Hexaclorocicloexano/farmacologia , Canais Iônicos/genética , Regeneração/genética
3.
Elife ; 92020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32142407

RESUMO

How salamanders accomplish progenitor cell proliferation while faithfully maintaining genomic integrity and regenerative potential remains elusive. Here we found an innate DNA damage response mechanism that is evident during blastema proliferation (early- to late-bud) and studied its role during tissue regeneration by ablating the function of one of its components, Eyes absent 2. In eya2 mutant axolotls, we found that DNA damage signaling through the H2AX histone variant was deregulated, especially within the proliferating progenitors during limb regeneration. Ultimately, cell cycle progression was impaired at the G1/S and G2/M transitions and regeneration rate was reduced. Similar data were acquired using acute pharmacological inhibition of the Eya2 phosphatase activity and the DNA damage checkpoint kinases Chk1 and Chk2 in wild-type axolotls. Together, our data indicate that highly-regenerative animals employ a robust DNA damage response pathway which involves regulation of H2AX phosphorylation via Eya2 to facilitate proper cell cycle progression upon injury.


Assuntos
Ambystoma mexicanum/fisiologia , Extremidades/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Regeneração/fisiologia , Animais , Ciclo Celular/fisiologia , Dano ao DNA , Reparo do DNA/fisiologia , Regulação da Expressão Gênica , Histonas/genética , Histonas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Nucleares/genética , Proteínas Tirosina Fosfatases/genética
4.
Dev Biol ; 424(1): 1-9, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28235582

RESUMO

Matching appendage size to body size is fundamental to animal function. Generating an appropriately-sized appendage is a robust process executed during development which is also critical for regeneration. When challenged, larger animals are programmed to regenerate larger limbs than smaller animals within a single species. Understanding this process has important implications for regenerative medicine. To approach this complex question, models with altered appendage size:body size ratios are required. We hypothesized that repeatedly challenging axolotls to regrow limb buds would affect their developmental program resulting in altered target morphology. We discovered that after 10 months following this experimental procedure, limbs that developed were permanently miniaturized. This altered target morphology was preserved upon amputation and regeneration. Future experiments using this platform should provide critical information about how target limb size is encoded within limb progenitors.


Assuntos
Ambystoma mexicanum/embriologia , Amputação Cirúrgica , Botões de Extremidades/embriologia , Botões de Extremidades/patologia , Animais , Ectromelia/patologia , Botões de Extremidades/anormalidades , Botões de Extremidades/inervação , Tecido Nervoso/patologia , Tamanho do Órgão , Regeneração
5.
NPJ Regen Med ; 2: 30, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29302364

RESUMO

Axolotl salamanders are powerful models for understanding how regeneration of complex body parts can be achieved, whereas mammals are severely limited in this ability. Factors that promote normal axolotl regeneration can be examined in mammals to determine if they exhibit altered activity in this context. Furthermore, factors prohibiting axolotl regeneration can offer key insight into the mechanisms present in regeneration-incompetent species. We sought to determine if we could experimentally compromise the axolotl's ability to regenerate limbs and, if so, discover the molecular changes that might underlie their inability to regenerate. We found that repeated limb amputation severely compromised axolotls' ability to initiate limb regeneration. Using RNA-seq, we observed that a majority of differentially expressed transcripts were hyperactivated in limbs compromised by repeated amputation, suggesting that mis-regulation of these genes antagonizes regeneration. To confirm our findings, we additionally assayed the role of amphiregulin, an EGF-like ligand, which is aberrantly upregulated in compromised animals. During normal limb regeneration, amphiregulin is expressed by the early wound epidermis, and mis-expressing this factor lead to thickened wound epithelium, delayed initiation of regeneration, and severe regenerative defects. Collectively, our results suggest that repeatedly amputated limbs may undergo a persistent wound healing response, which interferes with their ability to initiate the regenerative program. These findings have important implications for human regenerative medicine.

6.
Cell Rep ; 16(3): 793-804, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27373150

RESUMO

The neural network of the temporal lobe is thought to provide a cognitive map of our surroundings. Functional analysis of this network has been hampered by coarse tools that often result in collateral damage to other circuits. We developed a chemogenetic system to temporally control electrical input into the hippocampus. When entorhinal input to the perforant path was acutely silenced, hippocampal firing patterns became destabilized and underwent extensive remapping. We also found that spatial memory acquired prior to neural silencing was impaired by loss of input through the perforant path. Together, our experiments show that manipulation of entorhinal activity destabilizes spatial coding and disrupts spatial memory. Moreover, we introduce a chemogenetic model for non-invasive neuronal silencing that offers multiple advantages over existing strategies in this setting.


Assuntos
Hipocampo/fisiologia , Rede Nervosa/fisiologia , Memória Espacial/fisiologia , Lobo Temporal/fisiologia , Animais , Córtex Entorrinal/fisiologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Via Perfurante/fisiologia
7.
Elife ; 42015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26523389

RESUMO

Newts have the ability to repeatedly regenerate their lens even during ageing. However, it is unclear whether this regeneration reflects an undisturbed genetic activity. To answer this question, we compared the transcriptomes of lenses, irises and tails from aged newts that had undergone lens regeneration 19 times with the equivalent tissues from young newts that had never experienced lens regeneration. Our analysis indicates that repeatedly regenerated lenses showed a robust transcriptional program comparable to young never-regenerated lenses. In contrast, the tail, which was never regenerated, showed gene expression signatures of ageing. Our analysis strongly suggests that, with respect to gene expression, the regenerated lenses have not deviated from a robust transcriptional program even after multiple events of regeneration throughout the life of the newt. In addition, our study provides a new paradigm in biology, and establishes the newt as a key model for the study of regeneration in relation to ageing.


Assuntos
Cristalino/fisiologia , Regeneração , Salamandridae/genética , Transcrição Gênica , Animais
8.
Hum Genomics ; 8: 22, 2014 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-25496664

RESUMO

BACKGROUND: Amphibians have the remarkable ability to regenerate missing body parts. After complete removal of the eye lens, the dorsal but not the ventral iris will transdifferentiate to regenerate an exact replica of the lost lens. We used reverse-phase nano-liquid chromatography followed by mass spectrometry to detect protein concentrations in dorsal and ventral iris 0, 4, and 8 days post-lentectomy. We performed gene expression comparisons between regeneration and intact timepoints as well as between dorsal and ventral iris. RESULTS: Our analysis revealed gene expression patterns associated with the ability of the dorsal iris for transdifferentiation and lens regeneration. Proteins regulating gene expression and various metabolic processes were enriched in regeneration timepoints. Proteins involved in extracellular matrix, gene expression, and DNA-associated functions like DNA repair formed a regeneration-related protein network and were all up-regulated in the dorsal iris. In addition, we investigated protein concentrations in cultured dorsal (transdifferentiation-competent) and ventral (transdifferentiation-incompetent) iris pigmented epithelial (IPE) cells. Our comparative analysis revealed that the ability of dorsal IPE cells to keep memory of their tissue of origin and transdifferentiation is associated with the expression of proteins that specify the dorso-ventral axis of the eye as well as with proteins found highly expressed in regeneration timepoints, especially 8 days post-lentectomy. CONCLUSIONS: The study deepens our understanding in the mechanism of regeneration by providing protein networks and pathways that participate in the process.


Assuntos
Cristalino/crescimento & desenvolvimento , Proteômica , Regeneração , Salamandridae/genética , Animais , Transdiferenciação Celular , Cromatografia Líquida , Reparo do DNA , Matriz Extracelular/metabolismo , Iris/citologia , Iris/metabolismo , Cristalino/citologia , Espécies Reativas de Oxigênio/metabolismo , Espectrometria de Massas em Tandem , Regulação para Cima
9.
Curr Top Dev Biol ; 108: 217-46, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24512711

RESUMO

Aging is marked by changes that affect organs and resident stem cell function. Shorting of telomeres, DNA damage, oxidative stress, deregulation of genes and proteins, impaired cell-cell communication, and an altered systemic environment cause the eventual demise of cells. At the same time, reparative activities also decline. It is intriguing to correlate aging with the decline of regenerative abilities. Animal models with strong regenerative capabilities imply that aging processes might not be affecting regeneration. In this review, we selectively present age-dependent changes in stem/progenitor cells that are vital for tissue homeostasis and repair. In addition, the aging effect on regeneration following injury in organs such as lung, skeletal muscle, heart, nervous system, cochlear hair, lens, and liver are discussed. These tissues are also known for diseases such as heart attack, stroke, cognitive impairment, cataract, and hearing loss that occur mostly during aging in humans. Conclusively, vertebrate regeneration declines with age with the loss of stem/progenitor cell function. Future studies on improving the function of stem cells, along with studies in fish and amphibians where regeneration does not decline with age, will undoubtedly provide insights into both processes.


Assuntos
Envelhecimento , Regeneração/fisiologia , Vertebrados/fisiologia , Animais , Reparo do DNA , Células Endoteliais/fisiologia , Células Ciliadas Auditivas/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Humanos , Células-Tronco Mesenquimais/citologia , Músculos/citologia , Músculos/patologia , Miocárdio/patologia , Neurônios/metabolismo , Células-Tronco/citologia , Células-Tronco/fisiologia
10.
Regeneration (Oxf) ; 1(3): 47-57, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27499863

RESUMO

Mexican axolotls lose potential for lens regeneration 2 weeks after hatching. We used microarrays to identify differently expressed genes before and after this critical time, using RNA isolated from iris. Over 3700 genes were identified as differentially expressed in response to lentectomy between young (7 days post-hatching) and old (3 months post-hatching) axolotl larvae. Strikingly, many of the genes were only expressed in the early or late iris. Genes that were highly expressed in young iris significantly enriched electron transport chain, transcription, metabolism, and cell cycle gene ontologies, all of which are associated with lens regeneration. In contrast, genes associated with cellular differentiation and tissue maturation were uniquely expressed in old iris. Many of these expression differences strongly suggest that young and old iris samples were collected before and after the spleen became developmentally competent to produce and secrete cells with humoral and innate immunity functions. Our study establishes the axolotl as a powerful model to investigate age-related cellular differentiation and immune system ontogeny within the context of tissue regeneration.

11.
PLoS One ; 8(10): e78054, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24205087

RESUMO

Coleoid cephalopods like squids have a camera-type eye similar to vertebrates. On the other hand, Nautilus (Nautiloids) has a pinhole eye that lacks lens and cornea. Since pygmy squid and Nautilus are closely related species they are excellent model organisms to study eye evolution. Having being able to collect Nautilus embryos, we employed next-generation RNA sequencing using Nautilus and pygmy squid developing eyes. Their transcriptomes were compared and analyzed. Enrichment analysis of Gene Ontology revealed that contigs related to nucleic acid binding were largely up-regulated in squid, while the ones related to metabolic processes and extracellular matrix-related genes were up-regulated in Nautilus. These differences are most likely correlated with the complexity of tissue organization in these species. Moreover, when the analysis focused on the eye-related contigs several interesting patterns emerged. First, contigs from both species related to eye tissue differentiation and morphogenesis as well as to cilia showed best hits with their Human counterparts, while contigs related to rabdomeric photoreceptors showed the best hit with their Drosophila counterparts. This bolsters the idea that eye morphogenesis genes have been generally conserved in evolution, and compliments other studies showing that genes involved in photoreceptor differentiation clearly follow the diversification of invertebrate (rabdomeric) and vertebrate (ciliated) photoreceptors. Interestingly some contigs showed as good a hit with Drosophila and Human homologues in Nautilus and squid samples. One of them, capt/CAP1, is known to be preferentially expressed in Drosophila developing eye and in vertebrate lens. Importantly our analysis also provided evidence of gene duplication and diversification of their function in both species. One of these genes is the Neurofibromatosis 1 (NF1/Nf1), which in mice has been implicated in lens formation, suggesting a hitherto unsuspected role in the evolution of the lens in molluscs.


Assuntos
Decapodiformes/crescimento & desenvolvimento , Decapodiformes/genética , Olho/crescimento & desenvolvimento , Olho/metabolismo , Cristalino/crescimento & desenvolvimento , Cristalino/metabolismo , Nautilus/crescimento & desenvolvimento , Nautilus/genética , Transcriptoma/genética , Animais , Evolução Biológica , Regulação da Expressão Gênica no Desenvolvimento
12.
PLoS One ; 8(4): e61445, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23613853

RESUMO

Regeneration of the lens in newts is quite a unique process. The lens is removed in its entirety and regeneration ensues from the pigment epithelial cells of the dorsal iris via transdifferentiation. The same type of cells from the ventral iris are not capable of regenerating a lens. It is, thus, expected that differences between dorsal and ventral iris during the process of regeneration might provide important clues pertaining to the mechanism of regeneration. In this paper, we employed next generation RNA-seq to determine gene expression patterns during lens regeneration in Notophthalmus viridescens. The expression of more than 38,000 transcripts was compared between dorsal and ventral iris. Although very few genes were found to be dorsal- or ventral-specific, certain groups of genes were up-regulated specifically in the dorsal iris. These genes are involved in cell cycle, gene regulation, cytoskeleton and immune response. In addition, the expression of six highly regulated genes, TBX5, FGF10, UNC5B, VAX2, NR2F5, and NTN1, was verified using qRT-PCR. These graded gene expression patterns provide insight into the mechanism of lens regeneration, the markers that are specific to dorsal or ventral iris, and layout a map for future studies in the field.


Assuntos
Cristalino/metabolismo , Salamandridae/genética , Salamandridae/fisiologia , Transcriptoma/genética , Animais , Perfilação da Expressão Gênica , Iris/metabolismo , Iris/fisiologia , Cristalino/fisiologia , Notophthalmus viridescens/genética , Notophthalmus viridescens/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Regeneração/genética , Regeneração/fisiologia
13.
Sci Rep ; 3: 1432, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23478590

RESUMO

Coleoid cephalopods have an elaborate camera eye whereas nautiloids have primitive pinhole eye without lens and cornea. The Nautilus pinhole eye provides a unique example to explore the module of lens formation and its evolutionary mechanism. Here, we conducted an RNA-seq study of developing eyes of Nautilus and pygmy squid. First, we found that evolutionary distances from the common ancestor to Nautilus or squid are almost the same. Although most upstream eye development controlling genes were expressed in both species, six3/6 that are required for lens formation in vertebrates was not expressed in Nautilus. Furthermore, many downstream target genes of six3/6 including crystallin genes and other lens protein related genes were not expressed in Nautilus. As six3/6 and its controlling pathways are widely conserved among molluscs other than Nautilus, the present data suggest that deregulation of the six3/6 pathway led to the pinhole eye evolution in Nautilus.


Assuntos
Evolução Biológica , Proteínas do Olho/genética , Proteínas de Homeodomínio/metabolismo , Nautilus/genética , Nautilus/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Cristalinas/química , Cristalinas/genética , Decapodiformes/embriologia , Decapodiformes/genética , Decapodiformes/metabolismo , Olho/embriologia , Olho/metabolismo , Proteínas do Olho/química , Proteínas do Olho/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Proteínas de Homeodomínio/genética , Cristalino/embriologia , Cristalino/metabolismo , Nautilus/embriologia , Proteínas do Tecido Nervoso/genética , Filogenia , Alinhamento de Sequência , Análise de Sequência de DNA , Proteína Homeobox SIX3
14.
Mol Vis ; 19: 135-45, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23378727

RESUMO

PURPOSE: Notophthalmus viridescens, the red-spotted newt, possesses tremendous regenerative capabilities. Among the tissues and organs newts can regenerate, the lens is regenerated via transdifferentiation of the pigment epithelial cells of the dorsal iris, following complete removal (lentectomy). Under normal conditions, the same cells from the ventral iris are not capable of regenerating. This study aims to further understand the initial signals of lens regeneration. METHODS: We performed microarray analysis using RNA from a dorsal or ventral iris isolated 1, 3, and 5 days after lentectomy and compared to RNA isolated from an intact iris. This analysis was supported with quantitative real-time polymerase chain reaction (qRT-PCR) of selected genes. RESULTS: Microarrays showed 804 spots were differentially regulated 1, 3, and 5 days post-lentectomy in the dorsal and ventral iris. Functional annotation using Gene Ontology revealed interesting terms. Among them, factors related to cell cycle and DNA repair were mostly upregulated, in the microarray, 3 and 5 days post-lentectomy. qRT-PCR for rad1 and vascular endothelial growth factor receptor 1 showed upregulation for the dorsal iris 3 and 5 days post- lentectomy and for the ventral iris 5 days post-lentectomy. Rad1 was also upregulated twofold more in the dorsal iris than in the ventral iris 5 days post-lentectomy (p<0.001). Factors related to redox homeostasis were mostly upregulated in the microarray in all time points and samples. qRT-PCR for glutathione peroxidase 1 also showed upregulation in all time points for the ventral and dorsal iris. For the most part, mitochondrial enzymes were downregulated with the notable exception of cytochrome c-related oxidases that were mostly upregulated at all time points. qRT-PCR for cytochrome c oxidase subunit 2 showed upregulation especially 3 days post-lentectomy for the dorsal and ventral iris (p<0.001). Factors related to extracellular matrix and tissue remodeling showed mostly upregulation (except collagen I) for all time points and samples. qRT-PCR for stromelysin 1/2 alpha and avidin showed upregulation in all the time points for the dorsal and ventral iris. CONCLUSIONS: The results show that the dorsal iris and the ventral iris follow the same general pattern with some distinct differences especially 5 days after lentectomy. In addition, while the expression of genes involved in DNA repair, redox homeostasis, and tissue remodeling in preparation for proliferation and transdifferentiation is altered in the entire iris, the response is more prominent in the dorsal iris following lentectomy.


Assuntos
Cristalino/fisiologia , Notophthalmus viridescens/genética , Notophthalmus viridescens/fisiologia , Regeneração/genética , Animais , Transdiferenciação Celular/genética , Reparo do DNA/genética , Genes cdc , Iris/citologia , Iris/fisiologia , Cristalino/citologia , Notophthalmus viridescens/anatomia & histologia , Análise de Sequência com Séries de Oligonucleotídeos , Oxirredução , Epitélio Pigmentado Ocular/citologia , Reação em Cadeia da Polimerase em Tempo Real , Regeneração/fisiologia , Transcriptoma
15.
Genome Biol ; 14(2): R16, 2013 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-23425577

RESUMO

BACKGROUND: Notophthalmus viridescens, an urodelian amphibian, represents an excellent model organism to study regenerative processes, but mechanistic insights into molecular processes driving regeneration have been hindered by a paucity and poor annotation of coding nucleotide sequences. The enormous genome size and the lack of a closely related reference genome have so far prevented assembly of the urodelian genome. RESULTS: We describe the de novo assembly of the transcriptome of the newt Notophthalmus viridescens and its experimental validation. RNA pools covering embryonic and larval development, different stages of heart, appendage and lens regeneration, as well as a collection of different undamaged tissues were used to generate sequencing datasets on Sanger, Illumina and 454 platforms. Through a sequential de novo assembly strategy, hybrid datasets were converged into one comprehensive transcriptome comprising 120,922 non-redundant transcripts with a N50 of 975. From this, 38,384 putative transcripts were annotated and around 15,000 transcripts were experimentally validated as protein coding by mass spectrometry-based proteomics. Bioinformatical analysis of coding transcripts identified 826 proteins specific for urodeles. Several newly identified proteins establish novel protein families based on the presence of new sequence motifs without counterparts in public databases, while others containing known protein domains extend already existing families and also constitute new ones. CONCLUSIONS: We demonstrate that our multistep assembly approach allows de novo assembly of the newt transcriptome with an annotation grade comparable to well characterized organisms. Our data provide the groundwork for mechanistic experiments to answer the question whether urodeles utilize proprietary sets of genes for tissue regeneration.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteoma/metabolismo , Regeneração/genética , Transcriptoma , Sequência de Aminoácidos , Animais , Coração/crescimento & desenvolvimento , Cristalino/crescimento & desenvolvimento , Cristalino/metabolismo , Cristalino/fisiologia , Dados de Sequência Molecular , Miocárdio/metabolismo , Proteoma/genética , Salamandridae
16.
Hum Genomics ; 6: 10, 2012 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23244440

RESUMO

In this review, we examine examples of conservation of protein structural motifs in unrelated or non-homologous proteins. For this, we have selected three DNA-binding motifs: the histone fold, the helix-turn-helix motif, and the zinc finger, as well as the globin-like fold. We show that indeed similar structures exist in unrelated proteins, strengthening the concept that three-dimensional conservation might be more important than the primary amino acid sequence.


Assuntos
Motivos de Aminoácidos , Sequências Hélice-Volta-Hélice , Hemoglobinas/química , Dedos de Zinco , Sequência Conservada , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Hemoglobinas/genética , Histonas/química , Histonas/genética , Humanos , Dobramento de Proteína , Alinhamento de Sequência
17.
Hum Genomics ; 6: 14, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23244575

RESUMO

In this contribution, we have examined the patterns of gene expression in normal and cataractous lenses as presented in five different papers using microarrays and expressed sequence tags. The purpose was to evaluate unique and common patterns of gene expression during development, aging and cataracts.


Assuntos
Catarata/genética , Etiquetas de Sequências Expressas/metabolismo , Regulação da Expressão Gênica , Cristalino/metabolismo , Cristalino/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Envelhecimento/genética , Animais , Catarata/patologia , Análise por Conglomerados , Perfilação da Expressão Gênica , Estudos de Associação Genética , Humanos , Imunidade/genética , Camundongos , Osteonectina/deficiência , Osteonectina/metabolismo , Splicing de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
18.
Birth Defects Res C Embryo Today ; 96(1): 1-29, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22457174

RESUMO

A number of organs have the intrinsic ability to regenerate, a distinctive feature that varies among organisms. Organ regeneration is a process not fully yet understood. However, when its underlying mechanisms are unraveled, it holds tremendous therapeutic potential for humans. In this review, we chose to summarize the repair and regenerative potential of the following organs and organ systems: thymus, adrenal gland, thyroid gland, intestine, lungs, heart, liver, blood vessels, germ cells, nervous system, eye tissues, hair cells, kidney and bladder, skin, hair follicles, pancreas, bone, and cartilage. For each organ, a review of the following is presented: (a) factors, pathways, and cells that are involved in the organ's intrinsic regenerative ability, (b) contribution of exogenous cells - such as progenitor cells, embryonic stem cells, induced pluripotent stem cells, and bone marrow-, adipose- and umbilical cord blood-derived stem cells - in repairing and regenerating organs in the absence of an innate intrinsic regenerative capability, (c) and the progress made in engineering bio-artificial scaffolds, tissues, and organs. Organ regeneration is a promising therapy that can alleviate humans from diseases that have not been yet cured. It is also superior to already existing treatments that utilize exogenous sources to substitute for the organ's lost structure and/or function(s).


Assuntos
Regeneração/fisiologia , Medicina Regenerativa/métodos , Animais , Humanos , Modelos Animais , Especificidade de Órgãos/fisiologia , Transplante de Células-Tronco , Células-Tronco/citologia , Células-Tronco/fisiologia , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...