Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Membranes (Basel) ; 14(4)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38668112

RESUMO

The human Respiratory Syncytial Virus (hRSV) stands as one of the most common causes of acute respiratory diseases. The infectivity of this virus is intricately linked to its membrane proteins, notably the attachment glycoprotein (G protein). The latter plays a key role in facilitating the attachment of hRSV to respiratory tract epithelial cells, thereby initiating the infection process. The present study aimed to characterize the interaction of the conserved cysteine-noose domain of hRSV G protein (cndG) with the transmembrane CX3C motif chemokine receptor 1 (CX3CR1) isoforms using computational tools of molecular modeling, docking, molecular dynamics simulations, and binding free energy calculations. From MD simulations of the molecular system embedded in the POPC lipid bilayer, we showed a stable interaction of cndG with the canonical fractalkine binding site in the N-terminal cavity of the CX3CR1 isoforms and identified that residues in the extracellular loop 2 (ECL2) region and Glu279 of this receptor are pivotal for the stabilization of CX3CR1/cndG binding, corroborating what was reported for the interaction of the chemokine fractalkine with CX3CR1 and its structure homolog US28. Therefore, the results presented here contribute by revealing key structural points for the CX3CR1/G interaction, allowing us to better understand the biology of hRSV from its attachment process and to develop new strategies to combat it.

2.
Int J Mol Sci ; 23(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36361671

RESUMO

Gestational diabetes mellitus (GDM) is recognized as a "window of opportunity" for the future prediction of such complications as type 2 diabetes mellitus and pelvic floor muscle disorders, including urinary incontinence and genitourinary dysfunction. Translational studies have reported that pelvic floor muscle disorders are due to a GDM-induced-myopathy (GDiM) of the pelvic floor muscle and rectus abdominis muscle (RAM). We now describe the transcriptome profiling of the RAM obtained by Cesarean section from GDM and non-GDM women with and without pregnancy-specific urinary incontinence (PSUI). We identified 650 genes in total, and the differentially expressed genes were defined by comparing three control groups to the GDM with PSUI group (GDiM). Enrichment analysis showed that GDM with PSUI was associated with decreased gene expression related to muscle structure and muscle protein synthesis, the reduced ability of muscle fibers to ameliorate muscle damage, and the altered the maintenance and generation of energy through glycogenesis. Potential genetic muscle biomarkers were validated by RT-PCR, and their relationship to the pathophysiology of the disease was verified. These findings help elucidate the molecular mechanisms of GDiM and will promote the development of innovative interventions to prevent and treat complications such as post-GDM urinary incontinence.


Assuntos
Diabetes Mellitus Tipo 2 , Diabetes Gestacional , Doenças Musculares , Incontinência Urinária , Gravidez , Humanos , Feminino , Diabetes Gestacional/metabolismo , Reto do Abdome/metabolismo , Cesárea/efeitos adversos , Diabetes Mellitus Tipo 2/complicações , Transcriptoma , Incontinência Urinária/genética , Biomarcadores , Perfilação da Expressão Gênica
3.
Biomol NMR Assign ; 15(2): 449-453, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34417717

RESUMO

KIN is a DNA/RNA-binding protein conserved evolutionarily from yeast to humans and expressed ubiquitously in mammals. It is an essential nuclear protein involved in numerous cellular processes, such as DNA replication, class-switch recombination, cell cycle regulation, and response to UV or ionizing radiation-induced DNA damage. The C-terminal region of the human KIN (hKIN) protein is composed of an SH3-like tandem domain, which is crucial for the anti-proliferation effect of the full-length protein. Herein, we present the 1H, 15N, and 13C resonances assignment of the backbone and side chains for the SH3-like tandem domain of the hKIN protein, as well as the secondary structure prediction based on the assigned chemical shifts using TALOS-N software. This work prepares the ground for future studies of RNA-binding and backbone dynamics.


Assuntos
Domínios de Homologia de src
4.
Comput Struct Biotechnol J ; 19: 2027-2044, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995900

RESUMO

During their life cycle, Leishmania parasites display a fine-tuned regulation of the mRNA translation through the differential expression of isoforms of eukaryotic translation initiation factor 4E (LeishIF4Es). The interaction between allosteric modulators such as 4E-interacting proteins (4E-IPs) and LeishIF4E affects the affinity of this initiation factor for the mRNA cap. Here, several computational approaches were employed to elucidate the molecular bases of the previously-reported allosteric modulation in L. major exerted by 4E-IP1 (Lm4E-IP1) on eukaryotic translation initiation factor 4E 1 (LmIF4E-1). Molecular dynamics (MD) simulations and accurate binding free energy calculations (ΔGbind ) were combined with network-based modeling of residue-residue correlations. We also describe the differences in internal motions of LmIF4E-1 apo form, cap-bound, and Lm4E-IP1-bound systems. Through community network calculations, the differences in the allosteric pathways of allosterically-inhibited and active forms of LmIF4E-1 were revealed. The ΔGbind values show significant differences between the active and inhibited systems, which are in agreement with the available experimental data. Our study thoroughly describes the dynamical perturbations of LmIF4E-1 cap-binding site triggered by Lm4E-IP1. These findings are not only essential for the understanding of a critical process of trypanosomatids' gene expression but also for gaining insight into the allostery of eukaryotic IF4Es, which could be useful for structure-based design of drugs against this protein family.

5.
Virus Res ; 276: 197805, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31712123

RESUMO

Human respiratory syncytial virus (hRSV) is one of the main etiological agents of diseases of the lower respiratory tract and is often responsible for the hospitalization of children and the elderly. To date, treatments are only palliative and there is no vaccine available. Natural products show exceptional structural diversity and they have played a vital role in drug research. Several investigations focused on applied structural modification of natural products to improved metabolic stability, solubility and biological actions them. Quercetin is a flavonoid that presents several biological activities, including anti-hRSV role. Some works criticize the pharmacological use of Quercetin because it has low solubility and low specificity. In this sense, we acetylated Quercetin structure and we used in vitro and in silico assays to compare anti-hRSV function between Quercetin (Q0) and its derivative molecule (Q1). Q1 shows lower cytotoxic effect than Q0 on HEp-2 cells. In addition, Q1 was more efficient than Q0 to protect HEp-2 cells infected with different multiplicity of infection (0.1-1 MOI). The virucidal effects of Q0 and Q1 suggest interaction between these molecules and viral particle. Dynamic molecular results suggest that Q0 and Q1 may interact with F-protein on hRSV surface in an important region to adhesion and viral infection. Q1 interaction with F-protein showed ΔG= -14.22 kcal/mol and it was more stable than Q0. Additional, MTT and plate assays confirmed that virucidal Q1 effects occurs during adhesion step of cycle hRSV replication. In conclusion, acetylation improves anti-hRSV Quercetin effects because Quercetin pentaacetate could interact with F-protein with lower binding energy and better stability to block viral adhesion. These results show alternative anti-hRSV strategy and contribute to drug discovery and development.


Assuntos
Antivirais/farmacologia , Células Epiteliais/efeitos dos fármacos , Quercetina/análogos & derivados , Vírus Sincicial Respiratório Humano/efeitos dos fármacos , Ligação Viral/efeitos dos fármacos , Acetilação , Linhagem Celular , Células Epiteliais/virologia , Humanos , Simulação de Dinâmica Molecular , Quercetina/farmacologia , Vírus Sincicial Respiratório Humano/fisiologia , Proteínas Virais de Fusão/metabolismo , Replicação Viral/efeitos dos fármacos
6.
Heliyon ; 5(11): e02869, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31844748

RESUMO

Grb2 is an important regulator of normal vs. oncogenic cell signaling transduction. It plays a pivotal role on kinase-mediated signaling transduction by linking Receptor Tyrosine kinases to Ras/MAPK pathway which is known to bring oncogenic outcome. Coumarins are phenolic molecules found in several plants and seeds widely studied because of the antibiotic, anti-inflammatory, anticoagulant, vasodilator, and anti-tumor properties. Despite several studies about the anti-tumor properties of Coumarin in vivo and the role of Grb2 in signaling pathways related to cell proliferation, a molecular level investigation of the interaction between Grb2 and Coumarin is still missing. In this study, we performed a combined set of biophysical approaches to get insights on the interaction between Grb2 in a dimer state and Coumarin. Our results showed that Coumarin interacts with Grb2 dimer through its SH2 domain. The interaction is entropically driven, 1:1 molecular ratio and presents equilibrium constant of 105 M-1. In fact, SH2 is a well-known domain and a versatile signaling module for drug targeting which has been reported to bind compounds that block Ras activation in vivo. Despite we don't know the biological role coming from interaction between Grb2-SH2 domain and Coumarin, it is clear that this molecule could work in the same way as a SH2 domain inhibitor in order to block the link of Receptor Tyrosine kinases to Ras/MAPK pathway.

7.
Virus Res ; 251: 68-77, 2018 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-29621602

RESUMO

Human respiratory syncytial virus (hRSV) is one of the main etiological agents of diseases of the lower respiratory tract, and is often responsible for the hospitalization of children and the elderly. To date, treatments are only palliative and there is no vaccine available. The airways of patients infected with hRSV exhibit intense neutrophil infiltration, which is responsible for the release of neutrophil extracellular traps (NETs). These are extracellular structures consisting of DNA associated with intracellular proteins, and are efficient in capturing and eliminating various microorganisms, including some viruses. hRSV induces the release of NETs into the lung tissue of infected individuals; however, the pathophysiological consequences of this event have not been elucidated. The objective of this study was to utilize in vitro and in silico assays to investigate the impact of NETs on hRSV infection. NETs, generated by neutrophils stimulated with phorbol myristate acetate (PMA), displayed long fragments of DNA and an electrophoretic profile suggestive of the presence of proteins that are classically associated with these structures (elastase, cathepsin G, myeloperoxidase, and histones). The presence of NETs (>2 µg/ml) in HEp-2 cell culture medium resulted in cellular cytotoxicity of less than 50%. Pre-incubation (1 h) of viral particles (multiplicity of infection (MOI) values of 0.1, 0.5, and 1.0) with NETs (2-32 µg/ml) resulted in cellular protection from virus-induced death of HEp-2 cells. Concurrently, there was a reduction in the formation of syncytia, which is related to decreased viral spread in infected tissue. Results from western blotting and molecular docking, suggest interactions between F protein of the hRSV viral envelope and BPI (bactericidal permeability-increasing protein), a microbicidal member of NETs. Interactions occurred at sites important for the neutralization and coordination of the hRSV infection/replication process. Our results showed that the presence of NETs decreases hRSV-induced cellular damage, possibly by directly affecting viral particle capture and/or interfering with the fusion activity of the F protein. These findings broaden the understanding of the role of NETs during hRSV infection.


Assuntos
Armadilhas Extracelulares/metabolismo , Interações Hospedeiro-Patógeno , Neutrófilos/imunologia , Vírus Sincicial Respiratório Humano/imunologia , Proteínas Virais de Fusão/metabolismo , Células Cultivadas , DNA/análise , Proteínas de Ligação a DNA/análise , Células Epiteliais/virologia , Armadilhas Extracelulares/química , Humanos
8.
Int J Biol Macromol ; 95: 63-71, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27851930

RESUMO

hRSV is the major causative agent of acute respiratory infections. Among its eleven proteins, M2-1 is a transcription antiterminator, making it an interesting target for antivirals. Quercetin is a flavonol which inhibits some virus infectivity and replication. In the present work, the M2-1 gene was cloned, expressed and the protein was purified. Thermal stability and secondary structure were analyzed by circular dichroism and the interaction with Quercetin was evaluated by fluorescence spectroscopy. Molecular docking experiments were performed to understand this mechanism of interaction. The purified protein is mainly composed of α-helix, with a melting temperature of 328.6K (≈55°C). M2-1 titration with Quercetin showed it interacts with two sites, one with a strong constant association K1 (site 1≈1.5×106M-1) by electrostatic interactions, and another with a weak constant association K2 (site 2≈1.1×105M-1) by a hydrophobic interaction. Ligand's docking shows it interacts with the N-terminus face in a more polar pocket and, between the domains of oligomerization and RNA and P protein interaction, in a more hydrophobic pocket, as predicted by experimental data. Therefore, we postulated this ligand could be interacting with important domains of the protein, avoiding viral replication and budding.


Assuntos
Fenômenos Biofísicos , Simulação de Acoplamento Molecular , Quercetina/metabolismo , Vírus Sincicial Respiratório Humano , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Biologia Computacional , Ligação Proteica , Conformação Proteica , Proteínas Virais/química
9.
J Cell Biochem ; 118(5): 1003-1013, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27463229

RESUMO

Protandim and 6-gingerol, two potent nutraceuticals, have been shown to decrease free radicals production through enhancing endogenous antioxidant enzymes. In this study, we evaluated the effects of these products on the expression of different factors involved in osteoarthritis (OA) process. Human OA chondrocytes were treated with 1 ng/ml IL-1ß in the presence or absence of protandim (0-10 µg/ml) or 6-gingerol (0-10 µM). OA was induced surgically in mice by destabilization of the medial meniscus (DMM). The animals were treated weekly with an intraarticular injection of 10 µl of vehicle or protandim (10 µg/ml) for 8 weeks. Sham-operated mice served as controls. In vitro, we demonstrated that protandim and 6-gingerol preserve cell viability and mitochondrial metabolism and prevented 4-hydroxynonenal (HNE)-induced cell mortality. They activated Nrf2 transcription factor, abolished IL-1ß-induced NO, PGE2 , MMP-13, and HNE production as well as IL-ß-induced GSTA4-4 down-regulation. Nrf2 overexpression reduced IL-1ß-induced HNE and MMP-13 as well as IL-1ß-induced GSTA4-4 down-regulation. Nrf2 knockdown following siRNA transfection abolished protandim protection against oxidative stress and catabolism. The activation of MAPK and NF-κB by IL-1ß was not affected by 6-gingerol. In vivo, we observed that Nrf2 and GSTA4-4 expression was significantly lower in OA cartilage from humans and mice compared to normal controls. Interestingly, protandim administration reduced OA score in DMM mice. Altogether, our data indicate that protandim and 6-gingerol are essential in preserving cartilage and abolishing a number of factors known to be involved in OA pathogenesis. J. Cell. Biochem. 118: 1003-1013, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Anti-Inflamatórios/administração & dosagem , Catecóis/administração & dosagem , Condrócitos/efeitos dos fármacos , Medicamentos de Ervas Chinesas/administração & dosagem , Álcoois Graxos/administração & dosagem , Osteoartrite/tratamento farmacológico , Animais , Anti-Inflamatórios/farmacologia , Apoptose/efeitos dos fármacos , Catecóis/farmacologia , Sobrevivência Celular , Células Cultivadas , Condrócitos/citologia , Suplementos Nutricionais , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/farmacologia , Álcoois Graxos/farmacologia , Glutationa Transferase/metabolismo , Humanos , Injeções Intra-Articulares , Interleucina-1beta/efeitos adversos , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais/efeitos dos fármacos
10.
Int J Biol Macromol ; 85: 40-7, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26718867

RESUMO

Human Respiratory Syncytial Virus is one of the major causes of acute respiratory infections in children, causing bronchiolitis and pneumonia. Non-Structural Protein 1 (NS1) is involved in immune system evasion, a process that contributes to the success of hRSV replication. This protein can act by inhibiting or neutralizing several steps of interferon pathway, as well as by silencing the hRSV ribonucleoproteic complex. There is evidence that quercetin can reduce the infection and/or replication of several viruses, including RSV. The aims of this study include the expression and purification of the NS1 protein besides experimental and computational assays of the NS1-quercetin interaction. CD analysis showed that NS1 secondary structure composition is 30% alpha-helix, 21% beta-sheet, 23% turn and 26% random coils. The melting temperature obtained through DSC analysis was around 56°C. FRET analysis showed a distance of approximately 19Å between the NS1 and quercetin. Fluorescence titration results showed that the dissociation constant of the NS1-quercetin interaction was around 10(-6)M. In thermodynamic analysis, the enthalpy and entropy balanced forces indicated that the NS1-quercetin interaction presented both hydrophobic and electrostatic contributions. The computational results from the molecular modeling for NS1 structure and molecular docking regarding its interaction with quercetin corroborate the experimental data.


Assuntos
Modelos Moleculares , Conformação Molecular , Quercetina/química , Vírus Sincicial Respiratório Humano , Proteínas não Estruturais Virais/química , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/isolamento & purificação
11.
Food Chem ; 196: 935-42, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26593575

RESUMO

2-Phenylchromone (2PHE) is a flavone, found in cereals and herbs, indispensable in the human diet. Its chemical structure is the basis of all flavonoids present in black and green tea, soybean, red fruits and so on. Although offering such nutritional value, it still requires a molecular approach to understand its interactions with a specific target. The combination of experimental and computational techniques makes it possible to describe the interaction between 2PHE and human serum albumin (HSA). Fluorescence spectroscopy results show that the quenching mechanism is static, and thermodynamic analysis points to an entropically driven complex. The binding density function method provides information about a positive cooperative interaction, while drug displacement experiments indicate Sites 1 and 2 of HSA as the most probable binding sites. From the molecular dynamic study, it appears that the molecular docking is in agreement with experimental data and thus more realistic.


Assuntos
Cromonas/química , Espectrometria de Fluorescência/métodos , Sítios de Ligação , Computadores Moleculares , Flavonoides/química , Humanos , Simulação de Dinâmica Molecular , Ligação Proteica , Albumina Sérica/química , Termodinâmica
12.
Biol Proced Online ; 15(1): 10, 2013 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-24060497

RESUMO

BACKGROUND: The ZNF706 gene encodes a protein that belongs to the zinc finger family of proteins and was found to be highly expressed in laryngeal cancer, making the structure and function of ZNF706 worthy of investigation. In this study, we expressed and purified recombinant human ZNF706 that was suitable for structural analysis in Escherichia coli BL21(DH3). FINDINGS: ZNF706 mRNA was extracted from a larynx tissue sample, and cDNA was ligated into a cloning vector using the TOPO method. ZNF706 protein was expressed according to the E. coli expression system procedures and was purified using a nickel-affinity column. The structural qualities of recombinant ZNF706 and quantification alpha, beta sheet, and other structures were obtained by spectroscopy of circular dichroism. ZNF706's structural modeling showed that it is composed of α-helices (28.3%), ß-strands (19.4%), and turns (20.9%), in agreement with the spectral data from the dichroism analysis. CONCLUSIONS: We used circular dichroism and molecular modeling to examine the structure of ZNF706. The results suggest that human recombinant ZNF706 keeps its secondary structures and is appropriate for functional and structural studies. The method of expressing ZNF706 protein used in this study can be used to direct various functional and structural studies that will contribute to the understanding of its function as well as its relationship with other biological molecules and its putative role in carcinogenesis.

13.
Viruses ; 4(11): 2432-47, 2012 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-23202489

RESUMO

HRSV is one of the most important pathogens causing acute respiratory tract diseases as bronchiolitis and pneumonia among infants. HRSV was isolated from two distinct communities, a public day care center and a public hospital in São José do Rio Preto - SP, Brazil. We obtained partial sequences from G gene that were used on phylogenetic and selection pressure analysis. HRSV accounted for 29% of respiratory infections in hospitalized children and 7.7% in day care center children. On phylogenetic analysis of 60 HRSV strains, 48 (80%) clustered within or adjacent to the GA1 genotype; GA5, NA1, NA2, BA-IV and SAB1 were also observed. SJRP GA1 strains presented variations among deduced amino acids composition and lost the potential O-glycosilation site at amino acid position 295, nevertheless this resulted in an insertion of two potential O-glycosilation sites at positions 296 and 297. Furthermore, a potential O-glycosilation site insertion, at position 293, was only observed for hospital strains. Using SLAC and MEME methods, only amino acid 274 was identified to be under positive selection. This is the first report on HRSV circulation and genotypes classification derived from a day care center community in Brazil.


Assuntos
Adaptação Biológica , Variação Genética , Genótipo , Vírus Sincicial Respiratório Humano/classificação , Vírus Sincicial Respiratório Humano/genética , Sequência de Aminoácidos , Criança , Creches , Pré-Escolar , Feminino , Hospitais Públicos , Humanos , Lactente , Masculino , Dados de Sequência Molecular , Filogenia , Infecções por Vírus Respiratório Sincicial/epidemiologia , Seleção Genética , Alinhamento de Sequência , Proteínas do Envelope Viral/genética
14.
Braz. j. microbiol ; 43(1): 98-108, Jan.-Mar. 2012. ilus, tab
Artigo em Inglês | LILACS | ID: lil-622794

RESUMO

Viruses are the major cause of lower respiratory tract infections in childhood and the main viruses involved are Human Respiratory Syncytial Virus (HRSV), Human Metapneumovirus (HMPV), Influenzavirus A and B (FLUA and FLUB), Human Parainfluenza Virus 1, 2 and 3 (HPIV1, 2 and 3) and Human Rhinovirus (HRV). The purposes of this study were to detect respiratory viruses in hospitalized children younger than six years and identify the influence of temperature and relative air humidity on the detected viruses. Samples of nasopharyngeal washes were collected from hospitalized children between May/2004 and September/2005. Methods of viral detection were RT-PCR, PCR and HRV amplicons were confirmed by hybridization. Results showed 54% (148/272) of viral positivity. HRSV was detected in 29% (79/272) of the samples; HRV in 23.1% (63/272); HPIV3 in 5.1% (14/272); HMPV in 3.3% (9/272); HPIV1 in 2.9% (8/272); FLUB in 1.4% (4/272), FLUA in 1.1% (3/272), and HPIV2 in 0.3% (1/272). The highest detection rates occurred mainly in the spring 2004 and in the autumn 2005. It was observed that viral respiratory infections tend to increase as the relative air humidity decreases, showing significant association with monthly averages of minimal temperature and minimal relative air humidity. In conclusion, viral respiratory infections vary according to temperature and relative air humidity and viral respiratory infections present major incidences it coldest and driest periods.


Assuntos
Humanos , Criança , Microbiologia do Ar , Hibridização Genética , Técnicas In Vitro , Infecções por Paramyxoviridae , Infecções por Vírus Respiratório Sincicial , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Viroses , Vírus Sincicial Respiratório Humano/isolamento & purificação , Ar , Umidade , Pacientes Internados , Métodos , Temperatura
15.
J Pediatr (Rio J) ; 87(5): 439-44, 2011.
Artigo em Inglês, Português | MEDLINE | ID: mdl-22125800

RESUMO

OBJECTIVES: To identify and characterize respiratory viruses that infect children from daycare centers with symptoms of respiratory infection and to evaluate the association of clinical and epidemiological disease data with the identified virus. METHODS: We conducted a study between 2003 and 2005 in 176 children with respiratory infection symptoms attending a municipal daycare center. Samples from nasopharyngeal secretion were tested by reverse transcriptase polymerase chain reaction and positive samples for picornavirus were sequenced. RESULTS: All 782 collected samples were analyzed and 31.8% were positive for at least one of the studied respiratory viruses. Respiratory infections were characterized by the presence of mild symptoms of the upper respiratory tract, the most common of which were runny nose and cough. In the 2 years of study, most cases of infection occurred in autumn and winter, but respiratory viruses were detected throughout all the study period. CONCLUSIONS: Respiratory viruses and respiratory infections caused by them are part of the daily life of children attending daycare centers. Our results show the great impact that respiratory infections have on these children and suggest that more attention must be paid to viral pathogens.


Assuntos
Creches , Infecções por Picornaviridae/virologia , Infecções Respiratórias/virologia , Rhinovirus/isolamento & purificação , Distribuição por Idade , Sequência de Bases , Brasil/epidemiologia , Pré-Escolar , Feminino , Humanos , Lactente , Estudos Longitudinais , Masculino , Mucosa Nasal/metabolismo , Infecções por Picornaviridae/epidemiologia , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/patologia , Rhinovirus/genética , Estações do Ano , Distribuição por Sexo
16.
Biopolymers ; 87(4): 244-8, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17879331

RESUMO

The effect of changes in the bulk dielectric constant on the DNA torsional properties was evaluated from plasmid circularization reactions. In these reactions, pUC18 previously linearized by EcoRI digestion was recircularized with T4 DNA ligase. The bulk dielectric constant of the reaction medium was decreased by the addition of different concentrations of neutral solutes: ethylene glycol, glycerol, sorbitol, and sucrose, or increased by the addition of glycine. The topoisomers generated by the ligase reaction were resolved by agarose-gel electrophoresis. The DNA twist energy parameter (kappa), which is an apparent torsional constant, was determined by linearization of the Gaussian topoisomers' distribution. It was observed that the twist energy parameter for the given solutes is almost linearly dependent on the bulk dielectric constant. In the reaction buffer, the twist energy parameter was determined to be 1100 +/- 100. By decreasing the dielectric constant to 74 with the addition of sorbitol, the value of the parameter reaches kappa = 900 +/- 100, whereas the addition of ethylene glycol leads to kappa = 400 +/- 50. Upon addition of glycine, which resulted in a dielectric constant equal to 91, the value of the twist energy parameter increased to kappa = 1750 +/- 100.


Assuntos
DNA Circular/química , Conformação de Ácido Nucleico , Termodinâmica , Desoxirribonuclease EcoRI/química , Plasmídeos/química , Torção Mecânica
17.
J Med Virol ; 78(5): 614-8, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16555270

RESUMO

Oncogenic human papillomavirus (HPV), a causative agent of uterine cervical cancer, has also been detected in head and neck squamous cell cancers, especially in squamous cell carcinomas of the tonsils. However, the true HPV prevalence in normal and neoplasic oropharyngeal mucosa remains uncertain. To determine the prevalence of HPV DNA in normal oropharyngeal mucosa of cancer-free individuals, a study was carried out on 50 Brazilian subjects. PCR was performed to identify HPV DNA in samples from four sites in the oropharynx (tonsils, soft palate, base of the tongue, and back wall of the pharynx). For amplification of the HPV DNA, MY09/11 consensus primers were used, and specific genotypes were identified by dot-blot hybridization or cloning and sequencing. HPV DNA was present in 14.0% of the individuals, and the identified genotypes were 16, 18, 52, and 61. All these types are considered high-risk (HR) HPV. The tonsils and the soft palate were the sites with the highest HPV prevalence. This study shows the prevalence of HR HPV in the oropharynx of normal individuals. However, the prevalence of HPV is still unclear, and if HPV infection in a healthy it is not known individual predisposes to HPV-associated disease such as oropharyngeal cancer. Thus, it is important to assess the prevalence of HPV in cancer-free individuals, in order to compare it with the HPV prevalence in oropharyngeal carcinomas and to attempt to determine the true role of HPV in the development of head and neck squamous cell cancers.


Assuntos
Portador Sadio/diagnóstico , Mucosa Laríngea/virologia , Mucosa Bucal/virologia , Papillomaviridae/isolamento & purificação , Infecções por Papillomavirus/diagnóstico , Adolescente , Adulto , Brasil , Portador Sadio/virologia , DNA Viral/genética , Feminino , Neoplasias de Cabeça e Pescoço/virologia , Humanos , Masculino , Pessoa de Meia-Idade , Papillomaviridae/classificação , Papillomaviridae/genética , Infecções por Papillomavirus/virologia , Reação em Cadeia da Polimerase , Fatores de Risco , Especificidade da Espécie
18.
Pulmäo RJ ; 14(1): 59-68, jan.-mar. 2005. tab
Artigo em Português | LILACS | ID: lil-410514

RESUMO

As infecções respiratórias agudas são importante causa de morbimortalidade em pediatria em todo o mundo, particularmente nos países em desenvolvimento. As infecções respiratórias são responsáveis por mais de 25 de todo o atendimento médico pediátrico ambulatorial e hospitalar e, em torno de 90 dessas infecções são relacionadas com agentes virais. O vírus sincicial respiratório (VSR)possui distribuição mundial e constitui a causa mais comum de pneumonia viral em crianças com menos de 5 anos de idade. A bronquiolite ou a pneumonia grave têm probabilidade elevada de ocorrência em lactantes com cerca de 6 semanas de idade, com incidência máxima aos 2 meses. A infecção pelo VSR em lactantes e crianças de mais idade resulta em infecção das vias respiratórias menos agressiva do que aquela observada em lactentes com menos de 6 meses de idade. No hemisfério setentrional, os surtos de infecção pelo VSR tendem a terseu pico no inverno. Nas regiões tropicais, as epidemias pelo VSR iniciamîse no outono e vão até a primavera. A reinfecção é freqüente, porém os sintomas resultantes são mais leves, envolvendo as vias aéreas superiores. Nesta revisão são abordados aspectos importantes das infecções respiratórias por VSR relativos às características do VSR, imunidade, transmissão, epidemiologia, clínica e patologia, prevenção, tratamento, e mortalidade


Assuntos
Humanos , Criança , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Infecções por Vírus Respiratório Sincicial/diagnóstico , Infecções por Vírus Respiratório Sincicial/epidemiologia , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...