Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 151: 106353, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38194785

RESUMO

OBJECTIVE: The aim of this study was to evaluate the influence of the thickness of resin-matrix composite blocks manufactured by CAD-CAM on the light transmittance towards different resin-matrix cements or flowable composites. METHODS: Sixty specimens of resin-matrix composite CAD-CAM blocks reinforced with 89 wt% inorganic fillers were cross-sectioned with 2 or 3 mm thicknesses. The specimens were conditioned with adhesive system and divided in groups according to the luting material, namely: two dual-cured resin-matrix cements, two traditional flowable resin-matrix composites, and one thermal-induced flowable resin-matrix composite. Specimens were light-cured at 900 mW/cm2 for 40s. Light transmittance assays were preformed using a spectrophotometer with an integrated monochromator before and after light-curing. Microstructural analysis was performed by optical and scanning electron microscopy (SEM). Nanoindentation tests were performed to evaluate mechanical properties for indirect evaluation of degree of monomers conversion. RESULTS: Optical and SEM images revealed low thickness values for the cementation interfaces for the traditional flowable resin-matrix composite. The cement thickness increased with the size and content of inorganic fillers. The highest light transmittance was recorded for the onlay blocks cemented with the traditional flowable resin-matrix composites while a group cemented with the dual-cured resin-matrix cement revealed the lowest light transmittance. The elastic modulus and hardness increased for specimens with high content of inorganic fillers as well as it increased in function of the light transmittance. CONCLUSIONS: The light transmittance of flowable resin-matrix composites was higher than that for resin-matrix cement after cementation to resin-matrix composites blocks. The type, size, and content of inorganic fillers of the luting material affected the thickness of the cement layer and light transmittance through the materials. CLINICAL RELEVANCE: On chair-side light curing, the transmission of visible light can be interfered by the chemical composition and viscosity of the luting materials. The increase in size and content of inorganic fillers of resin-matrix composites and luting materials can decrease the light transmittance leading to inefficient polymerization.


Assuntos
Resinas Compostas , Cura Luminosa de Adesivos Dentários , Teste de Materiais , Propriedades de Superfície , Cura Luminosa de Adesivos Dentários/métodos , Resinas Compostas/química , Cimentos de Resina/química
2.
Head Face Med ; 19(1): 55, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110992

RESUMO

OBJECTIVE: The main aim of this study was to evaluate the morphological aspects and distribution of granules composed of deproteinized bovine bone mineral (DBBM) and human dentin-derived bone graft (HDBG) into a putty consistency mixture. MATERIALS AND METHODS: DBBM or HDBG were mixed with an alginate-based hydrogel at two different granule/hydrogel ratio (1:1 and 1:3) and divided into four test groups while two control groups were composed of DBBM or HDBG free of hydrogel. Groups of specimens were cross-sectioned for morphological evaluation by scanning electron microscopy (SEM) at backscattered electrons mode. Details on the dimensions and pores' size of DBBM and HDBG were evaluated after mixing different amounts of particles and alginate-based hydrogels. RESULTS: Microscopic analyses revealed a size of DBBM granules ranging from 750 up to 1600 µm while HDBG particles showed particle size ranging from 375 up to 1500 µm. No statistical differences were identified regarding the size of granules (p > 0.5). The mean values of pores' size of DBBM particles were noticed at around 400 µm while HDBG particles revealed micro-scale pores of around 1-3 µm promoted by the dentin tubules (p < 0.05). The lowest distance between particles was at 125 µm for HDBG and 250 µm for DBBM when the particle content was increased. On decreasing the particles' content, the distance between particles was larger for DBBM (~ 1000 µm) and HDBG (~ 1100 µm). In fact, statistically significant differences were found when the content of granules increased (p < 0.05). CONCLUSIONS: The increased content of bioactive ceramic granules in a putty consistency mixture with hydrogel decreased the space among granules that can promote a high ceramic density and stimulate the bone growth over the healing process. Macro-scale pores on bovine bone mineral granules stimulate the formation of blood vessels and cell migration while the micro-scale pores of dentin-derived granules are proper for the adsorption of proteins and growth of osteogenic cells on the bone healing process. CLINICAL SIGNIFICANCE: A high amount of bioactive ceramic granules should be considered when mixing with hydrogels as a putty material since that result in small spaces among granules maintaining the bone volume over the bone healing process. Deproteinized bovine bone mineral granules have macro-scale pores providing an enhanced angiogenesis while dentin-derived granules possess only micro-scale pores for the adsorption of proteins and proliferation of osteogenic cells on the bone healing process. Further studies should evaluate the combination of different bioactive ceramic materials for enhanced bone healing.


Assuntos
Substitutos Ósseos , Transplante Ósseo , Humanos , Animais , Bovinos , Transplante Ósseo/métodos , Minerais , Alginatos , Hidrogéis , Dentina , Regeneração Óssea
3.
Clin Oral Investig ; 27(9): 5679-5693, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37592003

RESUMO

OBJECTIVES: The aim of this in vitro study was to evaluate the light transmission through five different resin-matrix composites regarding the inorganic filler content. METHODS: Resin-matrix composite disc-shaped specimens were prepared on glass molds. Three traditional resin-matrix composites contained inorganic fillers at 74, 80, and 89 wt. % while two flowable composites revealed 60 and 62.5 wt. % inorganic fillers. Light transmission through the resin-matrix composites was assessed using a spectrophotometer with an integrated monochromator before and after light curing for 10, 20, or 40s. Elastic modulus and nanohardness were evaluated through nanoindentation's tests, while Vicker's hardness was measured by micro-hardness assessment. Chemical analyses were performed by FTIR and EDS, while microstructural analysis was conducted by optical microscopy and scanning electron microscopy. Data were evaluated using two-way ANOVA and Tukey's test (p < 0.05). RESULTS: After polymerization, optical transmittance increased for all specimens above 650-nm wavelength irradiation since higher light exposure time leads to increased light transmittance. At 20- or 40-s irradiation, similar light transmittance was recorded for resin composites with 60, 62, 74, or 78-80 wt. % inorganic fillers. The lowest light transmittance was recorded for a resin-matrix composite reinforced with 89 wt. % inorganic fillers. Thus, the size of inorganic fillers ranged from nano- up to micro-scale dimensions and the high content of micro-scale inorganic particles can change the light pathway and decrease the light transmittance through the materials. At 850-nm wavelength, the average ratio between polymerized and non-polymerized specimens increased by 1.6 times for the resin composite with 89 wt. % fillers, while the composites with 60 wt. % fillers revealed an increased ratio by 3.5 times higher than that recorded at 600-nm wavelength. High mean values of elastic modulus, nano-hardness, and micro-hardness were recorded for the resin-matrix composites with the highest inorganic content. CONCLUSIONS: A high content of inorganic fillers at 89 wt.% decreased the light transmission through resin-matrix composites. However, certain types of fillers do not interfere on the light transmission, maintaining an optimal polymerization and the physical properties of the resin-matrix composites. CLINICAL SIGNIFICANCE: The type and content of inorganic fillers in the chemical composition of resin-matrix composites do affect their polymerization mode. As a consequence, the clinical performance of resin-matrix composites can be compromised, leading to variable physical properties and degradation.


Assuntos
Odontologia , Vidro , Cromatografia Gasosa , Módulo de Elasticidade , Dureza
4.
J Mech Behav Biomed Mater ; 143: 105943, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37276650

RESUMO

Surface modification of yttria-stabilized tetragonal zirconia polycrystals (Y-TZP) using lasers for adhesion enhancement with resin-matrix cement has been increasingly explored. However, Y-TZP is chemically inert and non-reactive, demanding surface modification using alternative approaches to enhance its bond strength to resin-matrix cements. The main aim of this study was to conduct an integrative review on the influence of ultrashort pulse laser patterning of zirconia (3Y-TZP) for enhanced bonding to resin-matrix cements. An electronic search was performed on web of science, SCOPUS, Pubmed/Medline, Google Scholar and EMBASE using a combination of the following search items: zirconia, 3Y-TZP, surface modification, laser surface treatment, AND laser, ultrashortpulse laser, bonding, adhesion, and resin cement. Articles published in the English language, up to January 2022, were included regarding the influence of surface patterning on bond strength of Y-TZP to resin-matrix cements. Out of the 12 studies selected for the present review 10 studies assessed femtosecond lasers while 2 studies assessed picosecond lasers. Ultrashort pulsed laser surface patterning successfully produced different surface morphological aspects without damaging the bulk properties of zirconia. Contrarily, defects such as micro-cracks occurs after surface modification using traditional methods such as grit-blasting or long-pulsed laser patterning. Ultrashort pulsed laser surface patterning increase bond strength of zirconia to resin-matrix cements and therefore such alternative physical method should be considered in dentistry. Also, surface defects were avoided using ultrashort pulsed laser surface patterning, which become the major advantage when compared with traditional physical methods or long pulse laser patterning.


Assuntos
Colagem Dentária , Cimentos de Resina , Propriedades de Superfície , Cimentos de Resina/química , Teste de Materiais , Lasers , Zircônio/química , Ítrio/química , Resistência ao Cisalhamento , Odontologia
5.
Clin Oral Investig ; 27(7): 3331-3345, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37069409

RESUMO

OBJECTIVE: The purpose of this study was to perform an integrative review on laser texturing the inner surface of lithium disilicate-reinforced glass ceramic or zirconia to increase their bond strength to resin-matrix cements. MATERIALS AND METHOD: A bibliographic review was performed on PubMed using the following search terms: "zirconia" OR "lithium disilicate" AND "laser" AND "surface" OR "roughness" AND "bond strength" AND "luting agent" OR "resin cement." Studies published in English language until March 15, 2023, were selected regarding the purpose of this study. RESULTS: A total of fifty-six studies were identified althoug thirteen studies were selected. The findings revealed that zirconia surfaces were significantly modified after laser irradiation resulting in macro-scale aligned retentive regions with depth values ranging from 50 to 120 µm. Average roughness values of laser-textured zirconia by Er,Cr:YSGG laser (~ 0.83 µm) were quite similar when compared to grit-blasted zirconia surfaces (~ 0.9 µm) although roughness increased up to 2.4 µm depending on the laser type and parameters. Lithium disilicate-reinforced glass ceramics textured with Er:YAG revealed an average roughness of around 3.5 µm while surfaces textured using Nd:YAG laser revealed an average roughness of 2.69 µm; that was quite similar to the roughness values recorded for etched surfaces (2.64 µm). The shear bond strength (SBS) values of zirconia surfaces textured on Nd:YVO4 laser irradiation were slightly higher (~ 33.5 MPa) than those recorded for grit-blasted zirconia surfaces (28 MPa). Laser-textured zirconia surfaces on CO2 laser revealed higher SBS values (18.1 ±0.8 MPa) than those (9.1 ± 0.56 MPa) recorded for untreated zirconia surfaces. On lithium disilicate-reinforced glass ceramics, higher SBS values to resin-matrix cements were recorded for specimens textured with a combination of fractional CO2 laser irradiation and HF acid etching (~ 22-24 MPa) when compared with grit-blasted specimens (12.2 MPa). Another study revealed SBS values at around 27.5 MPa for Er:YAG-textured lithium disilicate-reinforced glass ceramics to resin-matrix cements. CONCLUSIONS: The laser irradiation at high power increases the roughness of the inner surface of lithium disilicate-reinforced glass ceramic or zirconia leading to an enhanced bond strength to resin-matrix cements. Thus, the laser type and irradiation parameters can be adjusted to enhance the macro- and micro-scale retention of zirconia and glass ceramic surfaces to resin-matrix cements. CLINICAL RELEVANCE: Alternative methods for surface modification of lithium disilicate-reinforced glass ceramic and zirconia surfaces have been assessed to provide proper morphological aspects for enhanced adhesion to resin-matrix cements. An increase in the bond strength of glass ceramics or zirconia to resin-matrix cements can improve the long-term performance of cemented prosthetic structures in the oral cavity.


Assuntos
Colagem Dentária , Lasers de Estado Sólido , Cimentos de Resina/química , Lítio , Dióxido de Carbono , Propriedades de Superfície , Cerâmica/química , Porcelana Dentária/química , Resistência ao Cisalhamento , Teste de Materiais , Zircônio/química
6.
J Funct Biomater ; 14(3)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36976072

RESUMO

PURPOSE: This study aimed to assess the layer thickness and microstructure of traditional resin-matrix cements and flowable resin-matrix composites at dentin and enamel to composite onlay interfaces after cementation on low loading magnitude. MATERIALS AND METHODS: Twenty teeth were prepared and conditioned with an adhesive system for restoration with resin-matrix composite onlays manufactured by CAD-CAM. On cementation, tooth-to-onlay assemblies were distributed into four groups, including two traditional resin-matrix cements (groups M and B), one flowable resin-matrix composite (group G), and one thermally induced flowable composite (group V). After the cementation procedure, assemblies were cross-sectioned for inspection by optical microscopy at different magnification up to ×1000. RESULTS: The layer thickness of resin-matrix cementation showed the highest mean values at around 405 µm for a traditional resin-matrix cement (group B). The thermally induced flowable resin-matrix composites showed the lowest layer thickness values. The resin-matrix layer thickness revealed statistical differences between traditional resin cement (groups M and B) and flowable resin-matrix composites (groups V and G) (p < 0.05). However, the groups of flowable resin-matrix composites did not reveal statistical differences (p < 0.05). The thickness of the adhesive system layer at around 7 µm and 12 µm was lower at the interfaces with flowable resin-matrix composites when compared to the adhesive layer at resin-matrix cements, which ranged from 12 µm up to 40 µm. CONCLUSIONS: The flowable resin-matrix composites showed adequate flowing even though the loading on cementation was performed at low magnitude. Nevertheless, significant variation in thickness of the cementation layer was noticed for flowable resin-matrix composites and traditional resin-matrix cements that can occur in chair-side procedures due to the clinical sensitivity and differences in rheological properties of the materials.

7.
Materials (Basel) ; 16(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36837188

RESUMO

In dentistry, clinicians mainly use dual-cured or light-cured resin-matrix cements to achieve a proper polymerization of the organic matrix leading to enhanced physical properties of the cement. However, several parameters can affect the polymerization of resin-matrix cements. The main aim of the present study was to perform a scoping review on the degree of conversion (DC) of the organic matrix, the polymerization, and the light transmittance of different resin-matrix cements used in dentistry. A search was performed on PubMed using a combination of the following key terms: degree of conversion, resin cements, light transmittance, polymerization, light curing, and thickness. Articles in the English language published up to November 2022 were selected. The selected studies' results demonstrated that restorative structures with a thickness higher than 1.5 mm decrease the light irradiance towards the resin-matrix cement. A decrease in light transmission provides a low energy absorption through the resin cement leading to a low DC percentage. On the other hand, the highest DC percentages, ranging between 55 and 75%, have been reported for dual-cured resin-matrix cements, although the polymerization mode and exposure time also influence the DC of monomers. Thus, the polymerization of resin-matrix cements can be optimized taking into account different parameters of light-curing, such as adequate light distance, irradiance, exposure time, equipment, and wavelength. Then, optimum physical properties are achieved that provide a long-term clinical performance of the cemented restorative materials.

8.
Odontology ; 111(3): 541-553, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36495398

RESUMO

The purpose of this study was to perform an integrative review on the effects of cranberry and grape seed extracts concerning the disinfection of root canals maintaining the strength of the remnant tooth tissues' structure. A bibliographical search was carried out on the PubMed electronic platform using the following key terms: cranberry, grape seed, vaccinium macrocarpon, proanthocyanidin, antibacterial, antimicrobial, decontamination, disinfection, bacteria removal, bacteria eradication, bacteria elimination, endodontic, root canal, faecalis, and strength. The inclusion criteria involved articles published in the English language, until March, 2022, reporting the antibacterial effect of grape seed and cranberry extracts. Of 185 studies identified, 13 studies were selected for the present review. The grape seed extract (GSE), composed of proanthocyanidins, showed an antioxidant activity against the main bacteria found in endodontic secondary infection. The percentage of bacteria removal was recorded at around 96.97% by using GSE. Studies on cranberry extracts, which are composed of proanthocyanidins, revealed antimicrobial effects against bacteria related to periodontitis and dental caries. Additionally, GSE or cranberry allowed the dentin collagen cross-linking that preserved the 3D collagen network leading to the maintenance of the strength of the remnant tooth structure. However, the contaminated smear layer could not be removed by using only GSE or cranberry. Cranberry extracts and GSE revealed a significant antimicrobial activity in endodontic disinfection without changing the mechanical properties of the remnant dentin tissues. Furthermore, those components can be associated with traditional compounds to enhance their antimicrobial effects and eliminate the smear layer.


Assuntos
Anti-Infecciosos , Cárie Dentária , Extrato de Sementes de Uva , Proantocianidinas , Vaccinium macrocarpon , Vitis , Proantocianidinas/farmacologia , Proantocianidinas/química , Vaccinium macrocarpon/química , Cavidade Pulpar , Desinfecção , Extrato de Sementes de Uva/farmacologia , Extrato de Sementes de Uva/química , Anti-Infecciosos/farmacologia , Colágeno , Antibacterianos/farmacologia , Sementes
9.
Odontology ; 111(2): 310-327, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36370322

RESUMO

The main aim of this study was to perform an integrative review on the toxic effects of resin-matrix cements and their products in contact with fibroblasts or mesenchymal cells. A bibliographic search was performed on PubMed using the following search terms: "cytotoxicity" AND "fibroblast" OR "epithelial" OR "mesenchymal" AND "polymerization" OR "degree of conversion" OR "methacrylate" OR "monomer" AND "resin cement" OR "resin-based cement". The initial search in the available database yielded a total of 277 articles of which 21 articles were included in this review. A decrease in the viability of mouse fibroblasts ranged between 13 and 15% that was recorded for different resin-matrix cements after light curing exposure for 20 s. The viability of human fibroblasts was recorded at 83.11% after light curing for 20 s that increased up to 90.9% after light curing exposure for 40 s. Most of the studies linked the highest toxicity levels when the cells were in contact with Bis-GMA followed by UDMA, TEGDMA and HEMA. Resin-matrix cements cause a cytotoxic reaction when in contact with fibroblasts or mesenchymal cells due to the release of monomers from the polymeric matrix. The amount of monomers released from the resin matrix and their cytotoxicity depends on the polymerization parameters.


Assuntos
Ácidos Polimetacrílicos , Cimentos de Resina , Camundongos , Animais , Humanos , Cimentos de Resina/toxicidade , Ácidos Polimetacrílicos/toxicidade , Metacrilatos/toxicidade , Bis-Fenol A-Glicidil Metacrilato/farmacologia , Fibroblastos , Polimerização , Teste de Materiais
10.
Clin Oral Investig ; 26(9): 5575-5594, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35767045

RESUMO

PURPOSE: The objective of this study was to perform an integrative review on the effect the inorganic fillers on the light transmission through the resin-matrix composites during the light-curing procedure. METHOD: A bibliographic review was performed on PubMed using the following search terms: "fillers" OR "particle" AND "light curing" OR "polymerization" AND "light transmission" OR "light absorption" OR "light irradiance" OR "light attenuation" OR "light diffusion" AND "resin composite." The search involved articles published in English language in the last 10 years. RESULTS: Selected studies reported a decrease in biaxial strength and hardness in traditional resin-matrix composites in function of the depth of polymerization. However, there were no significant differences in biaxial strength and hardness recorded along the polymerization depth of Bulk-Fill™ composites. Strength and hardness were enhanced by increasing the size and content of inorganic fillers although some studies revealed a progressive decrease in the degree of conversion on increasing silica particle size. The translucency of glass-ceramic spherical fillers promoted light diffusion mainly in critical situations such as in the case of deep proximal regions of resin-matrix composites. CONCLUSIONS: The amount of light transmitted through the resin-matrix composites is influenced by the size, content, microstructure, and shape of the inorganic filler particles. The decrease of the degree of conversion affects negatively the physical and mechanical properties of the resin-matrix composites. CLINICAL RELEVANCE: The type and content of inorganic fillers in the chemical composition of resin-matrix composites do affect their polymerization. As a consequence, the clinical performance of resin-matrix composites can be compromised leading to variable physical properties and degradation. The polymerization mode of resin-matrix composites can be improved according to the type of inorganic fillers in their chemical composition.


Assuntos
Lâmpadas de Polimerização Dentária , Cura Luminosa de Adesivos Dentários , Resinas Compostas/química , Teste de Materiais , Polimerização , Propriedades de Superfície
11.
Lasers Med Sci ; 37(1): 77-93, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35022871

RESUMO

The aim of this work was to perform an integrative literature review on the influence of laser irradiation on zirconia implants to enhance surface topographic aspects and the biological response for osseointegration. An electronic search was carried out on the PubMed database using the following search terms: "zirconia" AND "laser" AND "surface modification" OR "surface treatment" AND "dental implants" OR "bone" OR "osteoblast" OR "osseointegration." Of the identified articles, 12 studies were selected in this review. Results reported that the laser irradiation was capable of promoting changes on the zirconia surfaces regarding topographic aspects, roughness, and wettability. An increase in roughness was recorded at micro- and nano-scale and it resulted in an enhanced wettability and biological response. Also, adhesion, spreading, proliferation, and differentiation of osteogenic cells were also enhanced after laser irradiation mainly by using a femtosecond laser at 10nJ and 80 MHz. After 3 months of osseointegration, in vivo studies in dogs revealed a similar average percentage of bone-to-implant contact (BIC) on zirconia surfaces (around 47.9 ± 16%) when compared to standard titanium surfaces (61.73 ±16.27%), denoting that there is no significant difference between such different materials. The laser  approach revealed several parameters that can be used for zirconia surface modification such as irradiation intensity, time, and frequency. Laser irradiation parameters can be optimized and well-controlled to reach desirable surface morphologic aspects and biological response concerning the osseointegration process.


Assuntos
Implantes Dentários , Animais , Planejamento de Prótese Dentária , Cães , Lasers , Osseointegração , Propriedades de Superfície , Titânio , Zircônio
12.
J Biomed Mater Res B Appl Biomater ; 110(1): 79-88, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34173713

RESUMO

This work aimed to assess the biomechanics, using the finite element method (FEM), of traditional titanium Morse taper (MT) dental implants compared to one-piece implants composed of zirconia, polyetheretherketone (PEEK), carbon fiber-reinforced PEEK (CFR-PEEK), or glass fiber-reinforced PEEK (GFR-PEEK). MT and one-piece dental implants were modeled within a mandibular bone section and loaded on an oblique force using FEM. A MT implant system involving a Ti6Al4V abutment and a cp-Ti grade IV implant was compared to one-piece implants composed of cp-Ti grade IV, zirconia (3Y-TZP), PEEK, CFR-PEEK, or GFR-PEEK. Stress on bone and implants was computed and analyzed while bone remodeling prediction was evaluated considering equivalent strain. In comparison to one-piece implants, the traditional MT implant revealed higher stress peak (112 MPa). The maximum stresses on the one-piece implants reached ~80 MPa, regardless their chemical composition. MT implant induced lower bone stimulus, although excessive bone strain was recorded for PEEK implants. Balanced strain levels were noticed for reinforced PEEK implants of which CFR-PEEK one-piece implants showed proper biomechanical behavior. Balanced strain levels might induce bone remodeling at the peri-implant region while maintaining low risks of mechanical failures. However, the strength of the PEEK-based composite materials is still low for long-term clinical performance.


Assuntos
Implantes Dentários , Titânio , Benzofenonas , Fenômenos Biomecânicos , Remodelação Óssea , Análise do Estresse Dentário , Análise de Elementos Finitos , Polímeros , Estresse Mecânico , Titânio/química , Zircônio
13.
Clin Oral Investig ; 26(1): 95-107, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34713360

RESUMO

BACKGROUND: Endodontically treated teeth usually can reveal an extensive loss of dental structure and require the use of intraradicular posts to provide adequate support and retention. Retention of the post depends on the surface treatment of the endodontic post itself and on the root canal dentin as well as on the type of resin-matrix cement. PURPOSE: The main aim of this study was to conduct an integrative review on the influence of different surface treatment methods of glass fiber-reinfored resin composite (GFRC) posts on their push-out bond strength to resin-matrix cements in endodontically treated teeth rehabiliation. METHOD: A literature search was performed on PubMed (via National Library of Medicine) regarding articles published within the last 10 years, using the following combination of search terms: "intracanal post" OR "endodontic post" OR "root canal post" OR "intraradicular post" OR "glass fiber" AND "resin cement" AND "adhesion" OR "bond strength" OR "shear bond strength" OR "push out". RESULTS: Results from the selected studies recorded the highest push-out bond strength around 22.5 MPa) on GFRC posts to resin-matrix cements when the surfaces were pre-treated by grit-blasting with silicate followed by silane conditioning. However, high values of push-out bond strength (21.5 MPa) were also noticed for GFRC posts after etching with hydrogen peroxide followed by silance conditioning. Thus, the highest values of bond strength of endodontic posts to the resin-matrix cements were recorded when a combined physico-chemical approach was assessed. Non-treated surfaces showed the lowest bond strength values between 5 to and 9 MPa. Surface analyses of GFRC posts showed an increased roughness after grit-blasting or etching that promoted a mechanical interlocking of the adhesive and resin-matrix cements. CONCLUSION: The combined treatment of glass fiber-reinforced resin composite post surfaces by physical and chemical methods can promote the increase in roughness and chemical functionalization of the surfaces prior to cementation., That results in a high mechanical interlocking of the resin-matrix cements and a stable retention of the teeth root intracanal posts. CLINICAL RELEVANCE: Combining chemical and physical modification methods of surfaces can provide the most promising adhesion-enhancing pathways of GFRC posts to resin-matrix cements, that can decrease the risk of clinical failures by fracture and detachment of endodontic posts.


Assuntos
Colagem Dentária , Técnica para Retentor Intrarradicular , Resinas Compostas , Cavidade Pulpar , Análise do Estresse Dentário , Dentina , Vidro , Teste de Materiais , Cimentos de Resina
14.
Materials (Basel) ; 14(21)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34771792

RESUMO

The purpose of this study was to evaluate the color stability of aesthetic restorative resin-matrix materials after their immersion in different dietary and therapeutic solutions. Thirty disc-shaped specimens (10 × 2 mm) were prepared from three different types of resin-matrix composites used in dentistry (BE, FS, AF). The color coordinates (L*a*b*, ΔL*, Δa*, Δa*, Δb* and ΔE*) were measured using a VITA Easyshade 3D-Master (VITA Zahnfabrik, Bad Säckingen, Germany) before and after the immersion of the specimens in coffee, red wine, Coca-Cola®, Eludril Care®, and distilled water solutions for 40 h. The color change (ΔE*) was calculated and analyzed by the Kolmogorov -Smirnov test and the Kruskal -Wallis multiple-comparison test. All the restorative materials showed significant color (ΔE*) changes after their exposure to red wine, followed by coffee and Coca-Cola®; however, one nanohybrid resin-matrix composite showed a high color stability in such colored test solutions. The chemical composition and content of the organic matrix played a key role in the color stability of the resin-matrix composites. Clinicians should advise their patients about the chemical interaction between dietary substances and different resin-matrix composites.

15.
Clin Oral Investig ; 25(10): 5595-5612, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34432138

RESUMO

OBJECTIVE: The aim of this study was to perform an integrative review on the layer thickness and microstructure of resin-matrix cements around custom-made or standard teeth root intracanal posts. MATERIALS AND METHODS: An electronic search was conducted on the PubMed using a combination of the following scientific terms: intraradicular post, root intracanal post, resin cement, thickness, adaptation, endodontic post, layer thickness, fit, shape, and endodontic core. The literature selection criteria accepted articles published in the English language, up to May 2021, involving in vitro analyses, meta-analyses, randomized controlled trials, and prospective cohort studies. RESULTS: The search identified 154 studies, of which 24 were considered relevant to this study. The selected studies provided important data considering cement layer thickness, tooth preparation, endodontic post, and type of resin-matrix cement. The anatomical variability of root canal systems, such as the oval- or C-shaped, represents a challenge in dental restoration with tooth root intracanal posts. The fitting of intracanal posts to different root regions is variable resulting in thick and irregular layers of resin-matrix cement. Defects like pores, micro-cracks, and micro-gaps were detected in the resin-matrix cement microstructure and represent spots of stress concentration and fracture. Custom-made tooth root intracanal posts provide a proper fitting and decrease the layer thickness of resin-matrix cement. CONCLUSIONS: In fact, the layer thickness of resin-matrix cements depends on the fitting of endodontic posts to tooth root canals. An increase of resin cement thickness causes the appearance of defects like pores, micro-cracks, and micro-gaps that can induce stress concentration and fractures at interfaces. CLINICAL RELEVANCE: The fitting of the endodontic post into the teeth root canal determine the layer thickness of the resin-matrix cement to establish an adequate retention. However, the increase in the thickness of the resin-matrix cement layer can lead to a high number of defects like pores or cracks and therefore decrease the strength of the interface.


Assuntos
Colagem Dentária , Técnica para Retentor Intrarradicular , Resinas Compostas , Cavidade Pulpar , Análise do Estresse Dentário , Humanos , Teste de Materiais , Estudos Prospectivos , Cimentos de Resina
16.
J Mech Behav Biomed Mater ; 120: 104565, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34087536

RESUMO

OBJECTIVES: The aim of this work was to evaluate the biomechanical behavior of one-piece zirconia implants with a functionally graded bioglass (BG) layer as compared to monolithic zirconia and BG-coated implants, using the finite element method (FEM). METHODS: Zirconia disks were infiltrated with bioglass S53P4 and then morphologically inspected by scanning electron microscopy (SEM) followed by mechanical analyses on micro-indentation tests for further biomechanical validation using the finite element method (FEM). On modeling, zirconia dental implants anchored into mandibular bone were simulated on occlusal loading as recorded under mastication. Three types of implants were simulated: i) free of BG coating, ii) with 100 µm or 150 µm thick conventional BG coatings; and iii) with graded BG coatings involving 3 different chemical composition distributions. The stress state at both implant and bone were evaluated using the FEM. The mechanically-induced bone remodelling was analyzed through the bone strain results. RESULTS: Infiltration of BG into a zirconia structure resulted in a ∼100 µm thick layer with an exponential-like gradation of chemical composition and properties. Regarding the FEM calculations, the BG coating induced up to 30% decrease on stress in the implant body when compared to the monolithic zirconia implant. The gradient of chemical composition also improved the stresses' distribution. The stresses distribution towards the BG-coatings were significantly high and could lead to failure. Stresses on the bone were recorded down to its strength threshold, with insignificant influence of the coating layer. The bone strain values on all models indicates further bone remodelling although BG-coated and BG-graded zirconia implants showed the highest strain magnitude that may enhance the mechanical stimulation for bone maintenance. SIGNIFICANCE: Graded BG-zirconia dental implants showed enhanced overall biomechanical behaviour as compared to the BG-coated or monolithic zirconia dental implants. Also, such biomechanical improvements noticed for the BG-graded system should be considered in combination with the well-known osseointegration benefits of bioactive glasses.


Assuntos
Implantes Dentários , Fenômenos Biomecânicos , Cerâmica , Análise do Estresse Dentário , Análise de Elementos Finitos , Estresse Mecânico , Zircônio
17.
J Biomed Mater Res B Appl Biomater ; 109(11): 1942-1952, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33834604

RESUMO

The main aim of this study was to perform an integrative review on the release of bisphenol A (BPA) from resin-matrix composites and potential toxic effects. A bibliographic search was performed on the PubMed platform using the following keywords: "Bisphenol A" OR "BPA" AND "resin composite" OR "composite resin" AND "toxicity" OR "cytotoxicity" OR "release". Inclusion criteria involved in vitro and in vivo studies on the release and toxicity of BPA. Results highlighted the release of BPA from resin-matrix composites due to insufficient polymerization and/or degradation of the polymeric matrix. BPA is part of the organic matrix of resin-matrix composites and may be hydrolysed in human saliva, although studies report that low doses might not be detected by traditional chemical analysis. Studies exposing zebrafish embryos to different concentrations of Bis-GMA, showed 55% mortality at 10 µM Bis-GMA while 30% mortality was recorded at 1 µM Bis-GMA. In patients, a BPA concentration of around 2.09 × 10-2  µg/ml was found in the saliva after placement of lingual orthodontic retainers with resin-matrix composites. Also, the BPA molecule can be swallowed and absorbed by the oral/gastrointestinal mucosa, which might result in systemic toxicity. The degradation of resin-matrix composites and release of BPA in oral environment are dependent on the organic matrix content and on the polymerization method. A increased release of BPA can lead to the absorption into oral and gastrointestinal mucosa with high risks of local and systemic toxicity.


Assuntos
Compostos Benzidrílicos/toxicidade , Bis-Fenol A-Glicidil Metacrilato/efeitos adversos , Bis-Fenol A-Glicidil Metacrilato/uso terapêutico , Fenóis/toxicidade , Animais , Odontologia , Humanos
18.
Clin Oral Investig ; 25(6): 3395-3408, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33783593

RESUMO

OBJECTIVE: The main aim of this study was to conduct an integrative review on the influence of the zirconia veneer thickness on the degree of conversion of resin-matrix cements. MATERIALS AND METHOD: An electronic search was performed on PubMed using a combination of the following search items: zirconia, thickness, veneer, degree of conversion, resin cement, light curing, and polymerization. Articles published in the English language, up to July 2020, were included regarding the influence of ceramic veneer thickness on the degree of conversion of resin-matrix cements. Randomized controlled trials and prospective cohort studies were also evaluated. RESULTS: Of the 21 selected studies, 9 investigated the light-curing effect, while five other articles evaluated the ceramic translucency. Three studies evaluated the degree of conversion of the resin-matrix cement while four articles assessed the veneer thickness. Results revealed a significant decrease of light transmission through the zirconia with a thickness ranging from 0.1 up to 1.5 mm. However, the ultra-thin thickness around 0.1 and 0.3 mm allowed a full polymerization of the dual-curing resin-matrix cement resulting in the integrity of the interface properties. The light-curing process of resin-matrix cements is also affected by the shade, chemical composition, and microstructure of zirconia and resin cement. Optimal conditions of light-curing are required to reach the threshold intensity of light and energy for polymerization of resin-matrix cements. CONCLUSIONS: The increase in zirconia veneer thickness negatively affects the degree of conversion of resin-matrix cements. Also, shade and microstructure are key factor to improve the light curing of resin cements. CLINICAL RELEVANCE: Clinicians should consider the zirconia thickness on resin-based cementation since a higher veneer thickness can negatively affect the light irradiation intensity towards the dual-curing resin-matrix cement. Thus, the degree of conversion of the resin-matrix cement can decrease leading to a low chemical stability (e.g., color instability) and poor mechanical properties.


Assuntos
Cimentos de Resina , Zircônio , Cerâmica , Porcelana Dentária , Humanos , Teste de Materiais , Estudos Prospectivos , Propriedades de Superfície
19.
J Biomed Mater Res B Appl Biomater ; 109(10): 1588-1600, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33622023

RESUMO

Peri-implant diseases are one of the main causes of dental implant failure. New strategies for dental implants manufacturing have been developed to prevent the accumulation of bacteria and related inflammatory reactions. The main aim of this work was to develop laser-treated titanium surfaces covered with silver that generate a electrical dipole to inhibit the oral bacteria accumulation. Two approaches were developed for that purpose. In one approach a pattern of different titanium dioxide thickness was produced on the titanium surface, using a Q-Switched Nd:YAG laser system operating at 1064 nm. The second approach was to incorporate silver particles on a laser textured titanium surface. The incorporation of the silver was performed by laser sintering and hot-pressing approaches. The anti-biofilm effect of the discs were tested against biofilms involving 14 different bacterial strains growth for 24 and 72 hr. The morphological aspects of the surfaces were evaluated by optical and field emission guns scanning electronical microscopy (FEGSEM) and therefore the wettability and roughness were also assessed. Physicochemical analyses revealed that the test surfaces were hydrophilic and moderately rough. The oxidized titanium surfaces showed no signs of antibacterial effects when compared to polished discs. However, the discs with silver revealed a decrease of accumulation of Porphyromonas gingivalis and Prevotella intermedia strains. Thus, the combination of Nd:YAG laser irradiation and hot-pressing was effective to produce silver-based patterns on titanium surfaces to inhibit the growth of pathogenic bacterial species. The laser parameters can be optimized to achieve different patterns, roughness, and thickness of the modified titanium layer regarding the type and region of the implant.


Assuntos
Antibacterianos/química , Nanopartículas Metálicas/química , Prata/química , Titânio/química , Antibacterianos/farmacologia , Biofilmes , Interações Hidrofóbicas e Hidrofílicas , Porphyromonas gingivalis/efeitos dos fármacos , Prevotella/efeitos dos fármacos , Prata/farmacologia , Propriedades de Superfície , Titânio/metabolismo
20.
Clin Oral Investig ; 25(4): 1627-1640, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33616805

RESUMO

OBJECTIVE: This integrative review aimed to report the toxic effect of submicron and nano-scale commercially pure titanium (cp Ti) debris on cells of peri-implant tissues. MATERIALS AND METHODS: A systematic search was carried out on the PubMed electronic platform using the following key terms: Ti "OR" titanium "AND" dental implants "AND" nanoparticles "OR" nano-scale debris "OR" nanometric debris "AND" osteoblasts "OR "cytotoxicity" OR "macrophage" OR "mutagenic" OR "peri-implantitis". The inclusion criteria involved articles published in the English language, until December 26, 2020, reporting the effect of nano-scale titanium particles as released from dental implants on the toxicity and damage of osteoblasts. RESULTS: Of 258 articles identified, 14 articles were selected for this integrative review. Submicron and nano-scale cp Ti particles altered the behavior of cells in culture medium. An inflammatory response was triggered by macrophages, fibroblasts, osteoblasts, mesenchymal cells, and odontoblasts as indicated by the detection of several inflammatory mediators such as IL-6, IL-1ß, TNF-α, and PGE2. The formation of a bioactive complex composed of calcium and phosphorus on titanium nanoparticles allowed their binding to proteins leading to the cell internalization phenomenon. The nanoparticles induced mutagenic and carcinogenic effects into the cells. CONCLUSIONS: The cytotoxic effect of debris released from dental implants depends on the size, concentration, and chemical composition of the particles. A high concentration of particles on nanometric scale intensifies the inflammatory responses with mutagenic potential of the surrounding cells. CLINICAL RELEVANCE: Titanium ions and debris have been detected in peri-implant tissues with different size, concentration, and forms. The presence of metallic debris at peri-implant tissues also stimulates the migration of immune cells and inflammatory reactions. Cp Ti and TiO2 micro- and nano-scale particles can reach the bloodstream, accumulating in lungs, liver, spleen, and bone marrow.


Assuntos
Implantes Dentários , Peri-Implantite , Humanos , Macrófagos , Osteoblastos , Titânio/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...