Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Mol Cell Biochem ; 428(1-2): 101-108, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28161805

RESUMO

Cisplatin is a drug widely used in chemotherapy that frequently causes severe renal dysfunction. Organic transporters have an important role to control the absorption and excretion of cisplatin in renal cells. Deletion and blockage of kinin B1 receptor has already been show to protect against cisplatin-induced acute kidney injury. To test whether it exerts its protective function by modulating the organic transporters in kidney, we studied kinin B1 receptor knockout mice and treatment with a receptor antagonist at basal state and in presence of cisplatin. Cisplatin administration caused downregulation of renal organic transporters; in B1 receptor knockout mice, this downregulation of organic transporters in kidney was absent; and treatment by a B1 receptor antagonist attenuated the downregulation of the transporter MATE-1. Moreover, kinin B1 receptor deletion and blockage at basal state resulted in higher renal expression of MATE-1. Moreover we observed that kinin B1 receptor deletion and blockage result in less accumulation of platinum in renal tissue. Thus, we propose that B1 receptor deletion and blockage protect the kidney from cisplatin-induced acute kidney injury by upregulating the expression of MATE-1, thereby increasing the efflux of cisplatin from renal cells.


Assuntos
Injúria Renal Aguda/prevenção & controle , Antagonistas de Receptor B1 da Bradicinina/farmacologia , Cisplatino/farmacocinética , Proteínas de Transporte de Cátions Orgânicos/genética , Receptor B1 da Bradicinina/genética , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/genética , Animais , Cisplatino/administração & dosagem , Cisplatino/efeitos adversos , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Inativação de Genes , Rim/efeitos dos fármacos , Rim/metabolismo , Masculino , Camundongos , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Receptor B1 da Bradicinina/metabolismo
2.
Immunobiology ; 220(12): 1311-21, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26297425

RESUMO

Beyond the classical actions of the renin-angiotensin system on the regulation of cardiovascular homeostasis, several studies have shown its involvement in acute and chronic inflammation. The G protein-coupled receptor Mas is a functional binding site for the angiotensin-(1-7); however, its role in the immune system has not been fully elucidated. In this study, we evaluated the effect of genetic deletion of Mas receptor in lipopolysaccharide (LPS)-induced systemic and cerebral inflammation in mice. Inflammatory response was triggered in Mas deficient (Mas(-/-)) and C57BL/6 wild-type (WT) mice (8-12 weeks-old) by intraperitoneal injection of LPS (5 mg/kg). Mas(-/-) mice presented more intense hypothermia compared to WT mice 24 h after LPS injection. Systemically, the bone marrow of Mas(-/-) mice contained a lower number of neutrophils and monocytes 3 h and 24 h after LPS injection, respectively. The plasma levels of inflammatory mediators KC, MCP-1 and IL-10 were higher in Mas(-/-) mice 24 h after LPS injection in comparison to WT. In the brain, Mas(-/-) animals had a significant increase in the number of adherent leukocytes to the brain microvasculature compared to WT mice, as well as, increased number of monocytes and neutrophils recruited to the pia-mater. The elevated number of adherent leukocytes on brain microvasculature in Mas(-/-) mice was associated with increased expression of CD11b - the alpha-subunit of the Mac-1 integrin - in bone marrow neutrophils 3h after LPS injection, and with increased brain levels of chemoattractants KC, MIP-2 and MCP-1, 24 h later. In conclusion, we demonstrated that Mas receptor deficiency results in exacerbated inflammation in LPS-challenged mice, which suggest a potential role for the Mas receptor as a regulator of systemic and brain inflammatory response induced by LPS.


Assuntos
Inflamação/genética , Inflamação/imunologia , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/genética , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/genética , Animais , Biomarcadores , Temperatura Corporal , Peso Corporal , Medula Óssea/patologia , Encéfalo/irrigação sanguínea , Encéfalo/imunologia , Encéfalo/metabolismo , Encéfalo/patologia , Antígeno CD11b/genética , Antígeno CD11b/metabolismo , Circulação Cerebrovascular , Quimiocinas/sangue , Quimiocinas/metabolismo , Quimiotaxia de Leucócito , Citocinas/sangue , Citocinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Inflamação/sangue , Inflamação/patologia , Contagem de Leucócitos , Lipopolissacarídeos/efeitos adversos , Masculino , Camundongos , Camundongos Knockout , Microcirculação , Monócitos/imunologia , Monócitos/metabolismo , Monócitos/patologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/patologia , Proto-Oncogene Mas
3.
Shock ; 41(4): 331-6, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24430551

RESUMO

The renin-angiotensin (Ang) system is involved in maintaining cardiovascular function by regulating blood pressure and electrolyte homeostasis. More recently, alternative pathways within the renin-angiotensin system have been described, such as the ACE-2/Ang-(1-7)/Mas axis, with opposite effects to the ones of the ACE/Ang-II/AT1 axis. Correspondingly, our previous work reported that Ang-(1-7) via its receptor Mas inhibits the mRNA expression of the proinflammatory cytokines interleukin 6 (IL-6) and tumor necrosis factor-α increased by lipopolysaccharide (LPS) in mouse peritoneal macrophages. These data led us to investigate the functional role of the Ang-(1-7)/Mas axis in an in vivo LPS model. In this work, we present evidence that Ang-(1-7) via Mas significantly reduced the LPS-increased production of circulating cytokines, such as IL-6, IL-12, and CXCL-1. This inhibitory effect was mediated by Mas because it was not detectable in Mas-deficient (Mas) mice. Accordingly, IL-6, CXCL-1, and CXCL-2 levels were higher after LPS treatment in the absence of Mas. Mas mice were less resistant to LPS-induced endotoxemia, their survival rate being 50% compared with 95% in wild-type mice. Telemetric analyses showed that Mas mice presented more pronounced LPS-induced hypothermia with a 3°C lower body temperature compared with wild-type mice. Altogether, our findings suggest that Ang-(1-7) and Mas inhibit LPS-induced cytokine production and hypothermia and thereby protect mice from the fatal consequences of endotoxemia.


Assuntos
Endotoxemia/complicações , Hipotermia/prevenção & controle , Proteínas Proto-Oncogênicas/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Angiotensina I/fisiologia , Animais , Células Cultivadas , Citocinas/biossíntese , Endotoxemia/metabolismo , Hipotermia/etiologia , Hipotermia/metabolismo , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos , Macrófagos Peritoneais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fragmentos de Peptídeos/fisiologia , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/deficiência , Receptores Acoplados a Proteínas G/deficiência
4.
Hypertension ; 62(5): 879-85, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24041943

RESUMO

The involvement and relevance of the renin-angiotensin system have been established clearly in cardiovascular diseases, and renin-angiotensin system involvement has also been investigated extensively in the central nervous system. Angiotensin II acts classically by binding to the AT1 and AT2 receptors. However, other pathways within the renin-angiotensin system have been described more recently, such as one in which angiotensin-(1-7) (Ang-(1-7)) binds to the receptor Mas. In the central nervous system specifically, it has been reported that this heptapeptide is involved in learning and memory processes that occur in central limbic regions, such as the hippocampus. Therefore, this prompted us to investigate the possible role of the Ang-(1-7)-receptor Mas pathway in epileptic seizures, which are also known to recruit limbic areas. In the present study, we show that Ang-(1-7) is the main metabolite of angiotensin I in rat hippocampi, and, strikingly, that thimet oligopeptidase is the main enzyme involved in the generation of Ang-(1-7). Furthermore, elevations in the levels of thimet oligopeptidase, Ang-(1-7), and of receptor Mas transcripts are observed in chronically stimulated epileptic rats, which suggest that the thimet oligopeptidase-Ang-(1-7)-receptor Mas axis may have a functional relevance in the pathophysiology of these animals. In summary, our data, which describe a new preferential biochemical pathway for the generation of Ang-(1-7) in the central nervous system and an increase in the levels of various elements of the related thimet oligopeptidase-Ang-(1-7)-receptor Mas pathway, unveil potential new roles of the renin-angiotensin system in central nervous system pathophysiology.


Assuntos
Angiotensina I/biossíntese , Hipocampo/metabolismo , Metaloendopeptidases/metabolismo , Fragmentos de Peptídeos/biossíntese , Proteínas Proto-Oncogênicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Epilepsia/metabolismo , Feminino , Proto-Oncogene Mas , Ratos , Ratos Wistar , Sistema Renina-Angiotensina/fisiologia
5.
Peptides ; 33(1): 67-76, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22178042

RESUMO

Here we report the isolation of carboxypeptidases A1 and A2 (CPA1 and CPA2) from the rat mesenteric arterial bed perfusate, which were found to be identical with their pancreatic counterparts. Angiotensin (Ang) I, Ang II, Ang-(1-9) and Ang-(1-12) were differentially processed by these enzymes, worthy mentioning the peculiar CPA1-catalyzed conversion of Ang II to Ang-(1-7) and the CPA2-mediated formation of Ang I from Ang-(1-12). We detected gene transcripts for CPA1 and CPA2 in mesentery and other extrapancreatic tissues, indicating that these CPAs might play a role in the renin-angiotensin system in addition to their functions as digestive enzymes.


Assuntos
Angiotensina II/metabolismo , Angiotensina I/metabolismo , Carboxipeptidases A/genética , Carboxipeptidases A/metabolismo , Artérias Mesentéricas/enzimologia , Sequência de Aminoácidos , Angiotensinogênio , Angiotensinas/metabolismo , Animais , Sequência de Bases , Regulação Enzimológica da Expressão Gênica , Técnicas In Vitro , Cinética , Artérias Mesentéricas/metabolismo , Dados de Sequência Molecular , Especificidade de Órgãos , Fragmentos de Peptídeos/metabolismo , Perfusão , Ratos
6.
J Cell Physiol ; 227(5): 2117-22, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21769868

RESUMO

It has been previously shown that besides its classical role in blood pressure control the renin-angiotensin system, mainly by action of angiotensin II on the AT(1) receptor, exerts pro-inflammatory effects such as by inducing the production of cytokines. More recently, alternative pathways to this system were described, such as binding of angiotensin-(1-7) to receptor Mas, which was shown to counteract some of the effects evoked by activation of the angiotensin II-AT(1) receptor axis. Here, by means of different molecular approaches we investigated the role of angiotensin-(1-7) in modulating inflammatory responses triggered in mouse peritoneal macrophages. Our results show that receptor Mas transcripts were up-regulated by eightfold in LPS-induced macrophages. Interestingly, macrophage stimulation with angiotensin-(1-7), following to LPS exposure, evoked an attenuation in expression of TNF-α and IL-6 pro-inflammatory cytokines; where this event was abolished when the receptor Mas selective antagonist A779 was also included. We then used heterologous expression of the receptor Mas in HEK293T cells to search for the molecular mechanisms underlying the angiotensin-(1-7)-mediated anti-inflammatory responses by a kinase array; what suggested the involvement of the Src kinase family. In LPS-induced macrophages, this finding was corroborated using the PP2 compound, a specific Src kinase inhibitor; and also by Western blotting when we observed that Ang-(1-7) attenuated the phosphorylation levels of Lyn, a member of the Src kinase family. Our findings bring evidence for an anti-inflammatory role for angiotensin-(1-7) at the cellular level, as well as show that its probable mechanism of action includes the modulation of Src kinases activities.


Assuntos
Angiotensina I/farmacologia , Lipopolissacarídeos/farmacologia , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/imunologia , Fragmentos de Peptídeos/farmacologia , Angiotensina I/imunologia , Animais , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Células HEK293 , Humanos , Lipopolissacarídeos/imunologia , Macrófagos Peritoneais/citologia , Macrófagos Peritoneais/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fragmentos de Peptídeos/imunologia , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Quinases da Família src/genética , Quinases da Família src/metabolismo
7.
Regul Pept ; 151(1-3): 135-8, 2008 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-18838088

RESUMO

Here we investigated the possible association between the carboxypeptidase A (CPA)-like activity of the rat mesenteric arterial bed (MAB) perfusate and the ability of this fluid of forming angiotensin (Ang) 1-9 and Ang 1-7 upon incubation with Ang I and Ang II, respectively. Initially, we observed that anion exchange chromatography of the perfusate would consistently split the characteristic Z-Val-Phe-hydrolyzing activity of CPA-like enzymes into five distinct peaks, whose proteolytic activities were then determined using also Ang I and Ang II as substrates. The resulting proteolytic profile for each peak indicated that rat MAB perfusate contains a complex mixture of carboxypeptidases; tentatively, five carboxypeptidases were distinguished based on their substrate preferences toward Z-Val-Phe, Ang I and Ang II. The respective reactions, namely, Z-Val-Phe cleavage, Ang I to Ang 1-9 conversion and Ang II to Ang 1-7 conversion, were inhibited by 1,10-phenanthroline and nearly fully blocked by potato carboxypeptidase inhibitor. Also, all the CPA-like activity peaks prepared by anion exchange chromatography were tested negative for contaminating Ang I-converting enzyme-2, cathepsin A and prolylcarboxypeptidase. Overall, our results indicate that rat MAB perfusate contains a multiplicity of Ang I and Ang II-processing CPA-like enzymes whose proteolytic specificities suggest they might perform peculiar regulatory roles in the local renin-angiotensin system.


Assuntos
Angiotensinas/metabolismo , Artérias Mesentéricas/metabolismo , Angiotensina I/metabolismo , Angiotensina II/metabolismo , Animais , Carboxipeptidases/antagonistas & inibidores , Carboxipeptidases/isolamento & purificação , Carboxipeptidases/metabolismo , Técnicas In Vitro , Cinética , Fragmentos de Peptídeos/metabolismo , Perfusão , Fenantrolinas/farmacologia , Inibidores de Proteases/farmacologia , Processamento de Proteína Pós-Traducional , Ratos , Ratos Wistar , Especificidade por Substrato
8.
Proc Natl Acad Sci U S A ; 104(51): 20588-93, 2007 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-18077343

RESUMO

To date, the endogenous ligands described for cannabinoid receptors have been derived from membrane lipids. To identify a peptide ligand for CB(1) cannabinoid receptors, we used the recently described conformation-state sensitive antibodies and screened a panel of endogenous peptides from rodent brain or adipose tissue. This led to the identification of hemopressin (PVNFKFLSH) as a peptide ligand that selectively binds CB(1) cannabinoid receptors. We find that hemopressin is a CB(1) receptor-selective antagonist, because it is able to efficiently block signaling by CB(1) receptors but not by other members of family A G protein-coupled receptors (including the closely related CB(2) receptors). Hemopressin also behaves as an inverse agonist of CB(1) receptors, because it is able to block the constitutive activity of these receptors to the same extent as its well characterized antagonist, rimonabant. Finally, we examine the activity of hemopressin in vivo using different models of pain and find that it exhibits antinociceptive effects when administered by either intrathecal, intraplantar, or oral routes, underscoring hemopressin's therapeutic potential. These results represent a demonstration of a peptide ligand for CB(1) cannabinoid receptors that also exhibits analgesic properties. These findings are likely to have a profound impact on the development of novel therapeutics targeting CB(1) receptors.


Assuntos
Agonismo Inverso de Drogas , Hemoglobinas/farmacologia , Fragmentos de Peptídeos/farmacologia , Receptor CB1 de Canabinoide/agonistas , Linhagem Celular , Humanos , Ligantes
9.
Am J Physiol Heart Circ Physiol ; 293(6): H3550-7, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17906107

RESUMO

We describe the enzymes that constitute the major bradykinin (BK)-processing pathways in the perfusates of mesenteric arterial bed (MAB) and coronary vessels isolated from Wistar normotensive rats (WNR) and spontaneously hypertensive rats. The contribution of particular proteases to BK degradation was revealed by the combined analysis of fragments generated during incubation of BK with representative perfusate samples and the effect of selective inhibitors on the respective reactions. Marked differences were seen among the perfusates studied; MAB secretes, per minute of perfusion, kininase activity capable of hydrolyzing approximately 300 pmol of BK/min, which is approximately 250-fold larger amount on a per unit time basis than that of its coronary counterpart. BK degradation in the coronary perfusate seems to be mediated by ANG I-converting enzyme, neutral endopeptidase 24.11-like enzyme, and a dl-2-mercaptomethyl-3-guanidinoethylthiopropanoic acid-sensitive basic carboxypeptidase; coronary perfusate of WNR contains an additional BK-degrading enzyme whose specificity resembles that of neurolysin or thimet oligopeptidase. Diversely, a des-Arg(9)-BK-forming enzyme, responsible for nearly all of the kininase activity of MAB perfusates of WNR and spontaneously hypertensive rats, could be purified by a procedure that involved affinity chromatography over potato carboxypeptidase inhibitor-Sepharose column and shown to be structurally identical to rat pancreatic carboxypeptidase B (CPB). Comparable levels of CPB mRNA expression were observed in pancreas, liver, mesentery, and kidney, but very low levels were detected in lung, heart, aorta, and carotid artery. In conclusion, distinct BK-processing pathways operate in the perfusates of rat MAB and coronary bed, with a substantial participation of a des-Arg(9)-BK-forming enzyme identical to pancreatic CPB.


Assuntos
Bradicinina/metabolismo , Carboxipeptidase B/sangue , Circulação Coronária , Hipertensão/enzimologia , Metaloendopeptidases/metabolismo , Peptidil Dipeptidase A/metabolismo , Circulação Esplâncnica , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Pressão Sanguínea , Bradicinina/análogos & derivados , Carboxipeptidase B/antagonistas & inibidores , Carboxipeptidase B/genética , Carboxipeptidase B/isolamento & purificação , Modelos Animais de Doenças , Regulação Enzimológica da Expressão Gênica , Hidrólise , Hipertensão/fisiopatologia , Masculino , Metaloendopeptidases/antagonistas & inibidores , Neprilisina/metabolismo , Pâncreas/enzimologia , Perfusão , Inibidores de Proteases/farmacologia , Ratos , Ratos Endogâmicos SHR , Ratos Wistar , Especificidade por Substrato , Distribuição Tecidual
10.
Proc. Natl. Acad. Sci. U. S. A ; 104(51): 20588-20593, 2007.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP, SESSP-IBACERVO | ID: biblio-1065733

RESUMO

To date, the endogenous ligands described for cannabinoid receptors have been derived from membrane lipids. To identify a peptide ligand for CB1 cannabinoid receptors, we used the recently described conformation-state sensitive antibodies and screened a panel of endogenous peptides from rodent brain or adipose tissue. This led to the identification of hemopressin (PVNFKFLSH) as a peptide ligand that selectively binds CB1 cannabinoid receptors. We find that hemopressin is a CB1 receptor-selective antagonist, because it is able to efficiently block signaling by CB1 receptors but not by other members of family A G protein-coupled receptors (including the closely related CB2 receptors). Hemopressin also behaves as an inverse agonist of CB1 receptors, because it is able to block the constitutive activity of these receptors to the same extent as its well characterized antagonist, rimonabant. Finally, we examine the activity of hemopressin in vivo using different models of pain and find that it exhibits antinociceptive effects when administered by either intrathecal, intraplantar, or oral routes, underscoring hemopressin's therapeutic potential. These results represent a demonstration of a peptide ligand for CB1 cannabinoid receptors that also exhibits analgesic properties. These findings are likely to have a profound impact on the development of novel therapeutics targeting CB1 receptors.


Assuntos
Animais , Ratos , Endocanabinoides , Inflamação/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...