Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Virulence ; 12(1): 951-967, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33734031

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) of the ST1-SCCmecIV lineage has been associated with community-acquired (CA) infections in North America and Australia. In Brazil, multi-drug resistant ST1-SCCmecIV MRSA has emerged in hospital-associated (HA) diseases in Rio de Janeiro. To understand these epidemiological differences, genomic and phylogenetic analyses were performed. In addition, virulence assays were done for representative CA - and HA-MRSA strains. Despite the conservation of the virulence repertoire, some genes were missing in Brazilian ST1-SCCmecIV including lukSF-PV, fnbB, and several superantigen-encoded genes. Additionally, CA-MRSA lost the splDE while HA-MRSA strains conserved the complete operon. Most of these variable genes were located in mobile genetic elements (MGE). However, conservation and maintenance of MGEs were often observed despite the absence of their associated virulence markers. A Bayesian phylogenetic tree revealed the occurrence of more than one entrance of ST1 strains in Rio de Janeiro. The tree shape and chronology allowed us to infer that the hospital-associated ST1-SCCmecIV from Brazil and the community-acquired USA400 from North America are not closely related and that they might have originated from different MSSA strains that independently acquired SCCmecIV cassettes. As expected, representatives of ST1 strains from Brazil showed lower cytotoxicity and a greater ability to survive inside human host cells. We suggest that Brazilian ST1-SCCmecIV strains have adapted to the hospital setting by reducing virulence and gaining the ability to persist and survive inside host cells. Possibly, these evolutionary strategies may balance the biologic cost of retaining multiple antibiotic resistance genes.


Assuntos
Infecções Comunitárias Adquiridas/microbiologia , Infecção Hospitalar/microbiologia , Evolução Molecular , Genoma Bacteriano , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Infecções Estafilocócicas/microbiologia , Teorema de Bayes , Genômica , Genótipo , Humanos , Staphylococcus aureus Resistente à Meticilina/classificação , Filogenia , Virulência , Fatores de Virulência/genética
2.
Infect Drug Resist ; 11: 2583-2592, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30588041

RESUMO

A pivotal event in the evolutionary path of methicillin-resistant Staphylococcus aureus (MRSA) is the acquisition of the staphylococcal cassette chromosome mec (SCCmec) element carrying the mecA gene, the determinant of methicillin resistance. Community-acquired (CA) MRSA is commonly associated with skin/soft tissue infections, and doxycycline is one of the drug choices for this purpose. Doxycycline resistance is associated with the acquisition of the tetK gene carried by the S. aureus plasmid pT181, which may also be integrated into SCCmec III and V. The aim of this study was to describe a novel SCCmec IV subtype (IVm) carrying tetK and reveal the genetic context of this element. The SCCmec sequence was obtained by whole-genome sequencing of the MRSA strain 2288 (ST1 CA-MRSA) and genomic analysis performed using different bioinformatics tools. A copy of pT181 was found to be integrated in the new SCCmec IVm of the strain 2288. The SCCmec IVm has high nucleotide identity (99%) with SCCmec IVa of the strain MW2, except for the J3 region, where the pT181 - carrying tetK gene - is inserted. Inverted repeats (IRs) flanking pT181 were found in this region, suggesting the occurrence of recombination events. The strain 2288 (spa type t125) shares most of the virulence attributes with MW2 (spa type t128), which is recognized in the past as a cause of severe infections in children in USA. The pattern of branching in the phylogenetic tree depicts a recent common ancestor shared by the 2228 strain and other MRSA from USA, including ERS410852, TCH70, CIG1835, CO-41, MW2, and USA400-0051, but none of them carried pT181. This study also showed that the tetK carried by SCCmec IVm is functional, determining resistance to doxycycline and tetracycline. The potential dissemination of the tetK and mecA genes in the same genetic event by the acquisition of this new SCCmec subtype is of concern for community infections.

3.
Front Microbiol ; 9: 220, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29503635

RESUMO

The aim of this study was to unravel the genetic determinants responsible for multidrug (including carbapenems) resistance and virulence in a clinical isolate of Klebsiella quasipneumoniae subsp. similipneumoniae by whole-genome sequencing and comparative analyses. Eighty-three clinical isolates initially identified as carbapenem-resistant K. pneumoniae were collected from nosocomial infections in southeast Brazil. After RAPD screening, the KPC-142 isolate, showing the most divergent DNA pattern, was selected for complete genome sequencing in an Illumina HiSeq 2500 instrument. Reads were assembled into scaffolds, gaps between scaffolds were resolved by in silico gap filling and extensive bioinformatics analyses were performed, using multiple comparative analysis tools and databases. Genome sequencing allowed to correct the classification of the KPC-142 isolate as K. quasipneumoniae subsp. similipneumoniae. To the best of our knowledge this is the first complete genome reported to date of a clinical isolate of this subspecies harboring both class A beta-lactamases KPC-2 and OKP-B-6 from South America. KPC-142 has one 5.2 Mbp chromosome (57.8% G+C) and two plasmids: 190 Kbp pKQPS142a (50.7% G+C) and 11 Kbp pKQPS142b (57.3% G+C). The 3 Kbp region in pKQPS142b containing the blaKPC-2 was found highly similar to that of pKp13d of K. pneumoniae Kp13 isolated in Southern Brazil in 2009, suggesting the horizontal transfer of this resistance gene between different species of Klebsiella. KPC-142 additionally harbors an integrative conjugative element ICEPm1 that could be involved in the mobilization of pKQPS142b and determinants of resistance to other classes of antimicrobials, including aminoglycoside and silver. We present the completely assembled genome sequence of a clinical isolate of K. quasipneumoniae subsp. similipneumoniae, a KPC-2 and OKP-B-6 beta-lactamases producer and discuss the most relevant genomic features of this important resistant pathogen in comparison to several strains belonging to K. quasipneumoniae subsp. similipneumoniae (phylogroup II-B), K. quasipneumoniae subsp. quasipneumoniae (phylogroup II-A), K. pneumoniae (phylogroup I), and K. variicola (phylogroup III). Our study contributes to the description of the characteristics of a novel K. quasipneumoniae subsp. similipneumoniae strain circulating in South America that currently represent a serious potential risk for nosocomial settings.

4.
Mem Inst Oswaldo Cruz ; 112(11): 790-792, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29091141

RESUMO

Staphylococcus aureus subsp. aureus, commonly referred as S. aureus, is an important bacterial pathogen frequently involved in hospital- and community-acquired infections in humans, ranging from skin infections to more severe diseases such as pneumonia, bacteraemia, endocarditis, osteomyelitis, and disseminated infections. Here, we report the complete closed genome sequence of a community-acquired methicillin-resistant S. aureus strain, USA400-0051, which is a prototype of the USA400 clone.


Assuntos
DNA Viral/genética , Genoma Bacteriano/genética , Staphylococcus aureus Resistente à Meticilina/genética , Infecções Estafilocócicas/virologia , Infecções Comunitárias Adquiridas/microbiologia , Humanos
5.
Mem. Inst. Oswaldo Cruz ; 112(11): 790-792, Nov. 2017. graf
Artigo em Inglês | LILACS | ID: biblio-1040563

RESUMO

Staphylococcus aureus subsp. aureus, commonly referred as S. aureus, is an important bacterial pathogen frequently involved in hospital- and community-acquired infections in humans, ranging from skin infections to more severe diseases such as pneumonia, bacteraemia, endocarditis, osteomyelitis, and disseminated infections. Here, we report the complete closed genome sequence of a community-acquired methicillin-resistant S. aureus strain, USA400-0051, which is a prototype of the USA400 clone.


Assuntos
Humanos , Infecções Estafilocócicas/virologia , DNA Viral/genética , Genoma Bacteriano/genética , Staphylococcus aureus Resistente à Meticilina/genética , Infecções Comunitárias Adquiridas/microbiologia
6.
Genome Biol Evol ; 8(10): 3187-3192, 2016 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-27635055

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) is still one of the most important hospital pathogen globally. The multiresistant isolates of the ST239-SCCmecIII lineage are spread over large geographic regions, colonizing and infecting hospital patients in virtually all continents. The balance between fitness (adaptability) and virulence potential is likely to represent an important issue in the clonal shift dynamics leading the success of some specific MRSA clones over another. The accessory gene regulator (agr) is the master quorum sensing system of staphylococci playing a role in the global regulation of key virulence factors. Consequently, agr inactivation in S. aureus may represent a significant mechanism of genetic variability in the adaptation of this healthcare-associated pathogen. We report here the complete genome sequence of the methicillin-resistant S. aureus, isolate HC1335, a variant of the ST239 lineage, which presents a natural insertion of an IS256 transposase element in the agrC gene encoding AgrC histidine kinase receptor.


Assuntos
Proteínas de Bactérias/genética , Genoma Bacteriano , Staphylococcus aureus Resistente à Meticilina/genética , Mutagênese Insercional , Proteínas Quinases/genética , Elementos de DNA Transponíveis , Aptidão Genética , Variação Genética
7.
Stand Genomic Sci ; 11: 34, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27152133

RESUMO

Staphylococcus aureus is a versatile Gram-positive coccus frequently found colonizing the skin and nasal membranes of humans. The acquisition of the staphylococcal cassette chromosome mec was a major milestone in the evolutionary path of methicillin-resistant S. aureus. This genetic element carries the mecA gene, the main determinant of methicillin resistance. MRSA is involved in a plethora of opportunistic infectious diseases. The accessory gene regulator is the major S. aureus quorum sensing system, playing an important role in staphylococcal virulence, including the development of biofilms. We report the complete genome sequence (NCBI BioProject ID: PRJNA264181) of the methicillin-resistant S. aureus strain GV69 (= CMVRS P4521), a variant of the ST239 lineage that presents with a natural attenuation of agr-RNAIII transcription and a moderate accumulation of biofilm.

8.
BMC Genomics ; 15: 943, 2014 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-25351875

RESUMO

BACKGROUND: The fungal genus Sporothrix includes at least four human pathogenic species. One of these species, S. brasiliensis, is the causal agent of a major ongoing zoonotic outbreak of sporotrichosis in Brazil. Elsewhere, sapronoses are caused by S. schenckii and S. globosa. The major aims on this comparative genomic study are: 1) to explore the presence of virulence factors in S. schenckii and S. brasiliensis; 2) to compare S. brasiliensis, which is cat-transmitted and infects both humans and cats with S. schenckii, mainly a human pathogen; 3) to compare these two species to other human pathogens (Onygenales) with similar thermo-dimorphic behavior and to other plant-associated Sordariomycetes. RESULTS: The genomes of S. schenckii and S. brasiliensis were pyrosequenced to 17x and 20x coverage comprising a total of 32.3 Mb and 33.2 Mb, respectively. Pair-wise genome alignments revealed that the two species are highly syntenic showing 97.5% average sequence identity. Phylogenomic analysis reveals that both species diverged about 3.8-4.9 MYA suggesting a recent event of speciation. Transposable elements comprise respectively 0.34% and 0.62% of the S. schenckii and S. brasiliensis genomes and expansions of Gypsy-like elements was observed reflecting the accumulation of repetitive elements in the S. brasiliensis genome. Mitochondrial genomic comparisons showed the presence of group-I intron encoding homing endonucleases (HE's) exclusively in S. brasiliensis. Analysis of protein family expansions and contractions in the Sporothrix lineage revealed expansion of LysM domain-containing proteins, small GTPases, PKS type1 and leucin-rich proteins. In contrast, a lack of polysaccharide lyase genes that are associated with decay of plants was observed when compared to other Sordariomycetes and dimorphic fungal pathogens, suggesting evolutionary adaptations from a plant pathogenic or saprobic to an animal pathogenic life style. CONCLUSIONS: Comparative genomic data suggest a unique ecological shift in the Sporothrix lineage from plant-association to mammalian parasitism, which contributes to the understanding of how environmental interactions may shape fungal virulence. . Moreover, the striking differences found in comparison with other dimorphic fungi revealed that dimorphism in these close relatives of plant-associated Sordariomycetes is a case of convergent evolution, stressing the importance of this morphogenetic change in fungal pathogenesis.


Assuntos
Doenças do Gato/microbiologia , Proteínas Fúngicas/genética , Sporothrix/genética , Esporotricose/transmissão , Fatores de Virulência/genética , Adaptação Biológica , Animais , Doenças do Gato/transmissão , Gatos , Evolução Molecular , Especiação Genética , Genoma Mitocondrial , Humanos , Filogenia , Sporothrix/classificação , Sporothrix/patogenicidade , Esporotricose/microbiologia , Esporotricose/veterinária
9.
BMC Microbiol ; 12: 172, 2012 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-22876890

RESUMO

BACKGROUND: The type IV secretion system (T4SS) can be classified as a large family of macromolecule transporter systems, divided into three recognized sub-families, according to the well-known functions. The major sub-family is the conjugation system, which allows transfer of genetic material, such as a nucleoprotein, via cell contact among bacteria. Also, the conjugation system can transfer genetic material from bacteria to eukaryotic cells; such is the case with the T-DNA transfer of Agrobacterium tumefaciens to host plant cells. The system of effector protein transport constitutes the second sub-family, and the third one corresponds to the DNA uptake/release system. Genome analyses have revealed numerous T4SS in Bacteria and Archaea. The purpose of this work was to organize, classify, and integrate the T4SS data into a single database, called AtlasT4SS - the first public database devoted exclusively to this prokaryotic secretion system. DESCRIPTION: The AtlasT4SS is a manual curated database that describes a large number of proteins related to the type IV secretion system reported so far in Gram-negative and Gram-positive bacteria, as well as in Archaea. The database was created using the RDBMS MySQL and the Catalyst Framework based in the Perl programming language and using the Model-View-Controller (MVC) design pattern for Web. The current version holds a comprehensive collection of 1,617 T4SS proteins from 58 Bacteria (49 Gram-negative and 9 Gram-Positive), one Archaea and 11 plasmids. By applying the bi-directional best hit (BBH) relationship in pairwise genome comparison, it was possible to obtain a core set of 134 clusters of orthologous genes encoding T4SS proteins. CONCLUSIONS: In our database we present one way of classifying orthologous groups of T4SSs in a hierarchical classification scheme with three levels. The first level comprises four classes that are based on the organization of genetic determinants, shared homologies, and evolutionary relationships: (i) F-T4SS, (ii) P-T4SS, (iii) I-T4SS, and (iv) GI-T4SS. The second level designates a specific well-known protein families otherwise an uncharacterized protein family. Finally, in the third level, each protein of an ortholog cluster is classified according to its involvement in a specific cellular process. AtlasT4SS database is open access and is available at http://www.t4ss.lncc.br.


Assuntos
Archaea/genética , Bactérias/genética , Sistemas de Secreção Bacterianos , Bases de Dados Genéticas , Plasmídeos , Proteínas de Membrana Transportadoras/genética
10.
Genet Mol Biol ; 35(1): 149-52, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22481888

RESUMO

The Xylella fastidiosa comparative genomic database is a scientific resource with the aim to provide a user-friendly interface for accessing high-quality manually curated genomic annotation and comparative sequence analysis, as well as for identifying and mapping prophage-like elements, a marked feature of Xylella genomes. Here we describe a database and tools for exploring the biology of this important plant pathogen. The hallmarks of this database are the high quality genomic annotation, the functional and comparative genomic analysis and the identification and mapping of prophage-like elements. It is available from web site http://www.xylella.lncc.br.

11.
Genet. mol. biol ; 35(1): 149-152, 2012. graf, tab
Artigo em Inglês | LILACS | ID: lil-617006

RESUMO

The Xylella fastidiosa comparative genomic database is a scientific resource with the aim to provide a user-friendly interface for accessing high-quality manually curated genomic annotation and comparative sequence analysis, as well as for identifying and mapping prophage-like elements, a marked feature of Xylella genomes. Here we describe a database and tools for exploring the biology of this important plant pathogen. The hallmarks of this database are the high quality genomic annotation, the functional and comparative genomic analysis and the identification and mapping of prophage-like elements. It is available from web site http://www.xylella.lncc.br.


Assuntos
Genoma , Genômica , Sequências Repetitivas Dispersas , Xylella
12.
BMC Microbiol ; 10: 37, 2010 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-20144182

RESUMO

BACKGROUND: Species belonging to the Rhizobiales are intriguing and extensively researched for including both bacteria with the ability to fix nitrogen when in symbiosis with leguminous plants and pathogenic bacteria to animals and plants. Similarities between the strategies adopted by pathogenic and symbiotic Rhizobiales have been described, as well as high variability related to events of horizontal gene transfer. Although it is well known that chromosomal rearrangements, mutations and horizontal gene transfer influence the dynamics of bacterial genomes, in Rhizobiales, the scenario that determine pathogenic or symbiotic lifestyle are not clear and there are very few studies of comparative genomic between these classes of prokaryotic microorganisms trying to delineate the evolutionary characterization of symbiosis and pathogenesis. RESULTS: Non-symbiotic nitrogen-fixing bacteria and bacteria involved in bioremediation closer to symbionts and pathogens in study may assist in the origin and ancestry genes and the gene flow occurring in Rhizobiales. The genomic comparisons of 19 species of Rhizobiales, including nitrogen-fixing, bioremediators and pathogens resulted in 33 common clusters to biological nitrogen fixation and pathogenesis, 15 clusters exclusive to all nitrogen-fixing bacteria and bacteria involved in bioremediation, 13 clusters found in only some nitrogen-fixing and bioremediation bacteria, 01 cluster exclusive to some symbionts, and 01 cluster found only in some pathogens analyzed. In BBH performed to all strains studied, 77 common genes were obtained, 17 of which were related to biological nitrogen fixation and pathogenesis. Phylogenetic reconstructions for Fix, Nif, Nod, Vir, and Trb showed possible horizontal gene transfer events, grouping species of different phenotypes. CONCLUSIONS: The presence of symbiotic and virulence genes in both pathogens and symbionts does not seem to be the only determinant factor for lifestyle evolution in these microorganisms, although they may act in common stages of host infection. The phylogenetic analysis for many distinct operons involved in these processes emphasizes the relevance of horizontal gene transfer events in the symbiotic and pathogenic similarity.


Assuntos
Alphaproteobacteria/genética , Evolução Molecular , Genes Bacterianos , Genoma Bacteriano , Modelos Genéticos , Família Multigênica , Filogenia , Simbiose/genética , Virulência/genética
13.
BMC Evol Biol ; 9: 258, 2009 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-19860885

RESUMO

BACKGROUND: Vibrio taxonomy has been based on a polyphasic approach. In this study, we retrieve useful taxonomic information (i.e. data that can be used to distinguish different taxonomic levels, such as species and genera) from 32 genome sequences of different vibrio species. We use a variety of tools to explore the taxonomic relationship between the sequenced genomes, including Multilocus Sequence Analysis (MLSA), supertrees, Average Amino Acid Identity (AAI), genomic signatures, and Genome BLAST atlases. Our aim is to analyse the usefulness of these tools for species identification in vibrios. RESULTS: We have generated four new genome sequences of three Vibrio species, i.e., V. alginolyticus 40B, V. harveyi-like 1DA3, and V. mimicus strains VM573 and VM603, and present a broad analyses of these genomes along with other sequenced Vibrio species. The genome atlas and pangenome plots provide a tantalizing image of the genomic differences that occur between closely related sister species, e.g. V. cholerae and V. mimicus. The vibrio pangenome contains around 26504 genes. The V. cholerae core genome and pangenome consist of 1520 and 6923 genes, respectively. Pangenomes might allow different strains of V. cholerae to occupy different niches. MLSA and supertree analyses resulted in a similar phylogenetic picture, with a clear distinction of four groups (Vibrio core group, V. cholerae-V. mimicus, Aliivibrio spp., and Photobacterium spp.). A Vibrio species is defined as a group of strains that share > 95% DNA identity in MLSA and supertree analysis, > 96% AAI, < or = 10 genome signature dissimilarity, and > 61% proteome identity. Strains of the same species and species of the same genus will form monophyletic groups on the basis of MLSA and supertree. CONCLUSION: The combination of different analytical and bioinformatics tools will enable the most accurate species identification through genomic computational analysis. This endeavour will culminate in the birth of the online genomic taxonomy whereby researchers and end-users of taxonomy will be able to identify their isolates through a web-based server. This novel approach to microbial systematics will result in a tremendous advance concerning biodiversity discovery, description, and understanding.


Assuntos
Evolução Molecular , Genoma Bacteriano , Vibrio/classificação , Vibrio/genética , Sequência de Bases , Filogenia
14.
Funct Integr Genomics ; 9(2): 263-70, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19184146

RESUMO

Rhizobium tropici is representative of the diversity of tropical rhizobia, besides comprising strains very effective in fixing N(2) in symbiosis with the common bean (Phaseolus vulgaris L.). The genome of a Brazilian commercial inoculant R. tropici strain (PRF 81, =SEMIA 4088), estimated at 7.85 Mb, was analyzed through a total of 9,026 shotgun reads, assembled in 1,668 phrap contigs, and covering approximately 30% of the genome. Annotation identified 2,135 coding DNA sequences (CDS), and only 57.2% have possible functions. The genome comprises a mosaic of genes, with CDS showing the highest similarities with 134 microorganisms, none of which represents more than 19% of the CDS with putative known functions. The high saprophytic capacity of PRF 81 may reside in a variety of genes related to transport, biodegradation of xenobiotics, defense, and secretion proteins, many of which were reported for the first time in the present study. Novelty was also found in nodulation (nodG, a double nodIJ system, nodT, nolF, nolG) and capsular polysaccharide genes, showing stronger similarities with Sinorhizobium (=Ensifer) than with the main symbionts of the common bean -- R. etli and R. leguminosarum -- suggesting that the original host of R. tropici might be another tropical legume or emphasizing the highly promiscuous nature of this rhizobial species.


Assuntos
Genes Bacterianos , Nodulação/genética , Rhizobium tropici/genética , Rhizobium tropici/fisiologia , Membrana Celular/genética , Membrana Celular/metabolismo , Genoma Bacteriano , Fixação de Nitrogênio/genética , Phaseolus/microbiologia , Polissacarídeos Bacterianos/genética , Polissacarídeos Bacterianos/metabolismo , Simbiose/genética
15.
Bioinformatics ; 20(16): 2832-3, 2004 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-15087310

RESUMO

UNLABELLED: A web-based software suite, SABIA (System for Automated Bacterial Integrated Annotation), is described that provides a comprehensive computational support for the assembly and annotation of whole bacterial genomes from the data derived from sequencing projects. AVAILABILITY: Both SABIA and supplementary materials are available at http://www.sabia.lncc.br


Assuntos
Algoritmos , Mapeamento Cromossômico/métodos , Bases de Dados Genéticas , Documentação/métodos , Genoma Bacteriano , Análise de Sequência de DNA/métodos , Software , Alinhamento de Sequência/métodos , Interface Usuário-Computador
16.
Genet Mol Res ; 3(1): 26-52, 2004 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-15100986

RESUMO

A new tool called System for Automated Bacterial Integrated Annotation--SABIA (SABIA being a very well-known bird in Brazil) was developed for the assembly and annotation of bacterial genomes. This system performs automatic tasks of assembly analysis, ORFs identification/analysis, and extragenic region analyses. Genome assembly and contig automatic annotation data are also available in the same working environment. The system integrates several public domains and newly developed software programs capable of dealing with several types of databases, and it is portable to other operational systems. These programs interact with most of the well-known biological database/softwares, such as Glimmer, Genemark, the BLAST family programs, InterPro, COG, Kegg, PSORT, GO, tRNAScan and RBSFinder, and can also be used to identify metabolic pathways.


Assuntos
Chromobacterium/genética , Biologia Computacional/métodos , Bases de Dados Genéticas , Genoma Bacteriano , Software , Brasil , Biologia Computacional/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...