Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Vasc Endovasc Surg ; 61(6): 954-963, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33875324

RESUMO

OBJECTIVE: This study examined the impact of submaximal walking training (WT) on local and systemic nitric oxide (NO) bioavailability, inflammation, and oxidative stress in patients with intermittent claudication (IC). METHODS: The study employed a randomised, controlled, parallel group design and was performed in a single centre. Thirty-two men with IC were randomly allocated to two groups: WT (n = 16, two sessions/week, 15 cycles of two minutes walking at an intensity corresponding to the heart rate obtained at the pain threshold interspersed by two minutes of upright rest) and control (CO, n = 16, two sessions/week, 30 minutes of stretching). NO bioavailability (blood NO and muscle nitric oxide synthase [eNOS]), redox homeostasis (catalase [CAT], superoxide dismutase [SOD], lipid peroxidation [LPO] measured in blood and muscle), and inflammation (interleukin-6 [IL-6], C-reactive protein [CRP], tumour necrosis factor α [TNF-α], intercellular adhesion molecules [ICAM], vascular adhesion molecules [VCAM] measured in blood and muscle) were assessed at baseline and after 12 weeks. RESULTS: WT statistically significantly increased blood NO, muscle eNOS, blood SOD and CAT, and muscle SOD and abolished the increase in circulating and muscle LPO observed in the CO group. WT decreased blood CRP, ICAM, and VCAM and muscle IL-6 and CRP and eliminated the increase in blood TNF-α and muscle TNF-α, ICAM and VCAM observed in the CO group. CONCLUSION: WT at an intensity of pain threshold improved NO bioavailability and decreased systemic and local oxidative stress and inflammation in patients with IC. The proposed WT protocol provides physiological adaptations that may contribute to cardiovascular health in these patients.


Assuntos
Exercício Físico/fisiologia , Inflamação , Claudicação Intermitente , Músculo Esquelético/metabolismo , Estresse Oxidativo , Caminhada/fisiologia , Adaptação Fisiológica/fisiologia , Proteína C-Reativa/análise , Teste de Esforço/métodos , Fatores de Risco de Doenças Cardíacas , Humanos , Claudicação Intermitente/sangue , Claudicação Intermitente/fisiopatologia , Claudicação Intermitente/terapia , Masculino , Pessoa de Meia-Idade , Óxido Nítrico/análise , Avaliação de Resultados em Cuidados de Saúde , Superóxido Dismutase/análise , Molécula 1 de Adesão de Célula Vascular/análise
2.
J Cardiovasc Nurs ; 36(5): 498-506, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32427794

RESUMO

OBJECTIVE: The aim of this study was to assess the effects of a single bout of maximal walking on blood and muscle nitric oxide (NO) bioavailability, oxidative stress, and inflammation in symptomatic peripheral artery disease (PAD) patients. METHODS: A total of 35 men with symptomatic PAD performed a graded maximal exercise test on a treadmill (3.2 km/h, 2% increase in grade every 2 minutes). Plasma samples and gastrocnemius muscle biopsies were collected preexercise and postexercise for assessment of NO bioavailability (plasma NO and muscle, endothelial NO synthase), oxidative stress and antioxidant function (lipid peroxidation [LPO], catalase [CAT], and superoxide dismutase), and inflammation (interleukin-6, C-reactive protein, tumor necrosis factor-α, intercellular adhesion molecules, and vascular adhesion molecules). The effects of the walking exercise were assessed using paired t tests or Wilcoxon tests. RESULTS: After maximal walking, plasma NO and LPO were unchanged (P > .05), plasma CAT decreased, and all blood inflammatory markers increased (all P ≤ .05). In the disease-affected skeletal muscle, endothelial NO synthase, CAT, LPO, and all inflammatory markers increased, whereas superoxide dismutase decreased (all P ≤ .05). CONCLUSION: In patients with symptomatic PAD, maximal exercise induces local and systemic impairments, which may play a key role in atherogenesis. Exercise strategies that avoid maximal effort may be important to reduce local and systemic damage and enhance clinical benefits.


Assuntos
Doença Arterial Periférica , Caminhada , Teste de Esforço , Humanos , Inflamação/metabolismo , Músculo Esquelético/metabolismo , Estresse Oxidativo
3.
Stress ; 22(3): 377-386, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30857457

RESUMO

Skeletal muscle hypertrophy is an exercise-induced adaptation, particularly in resistance training (RT) programs that use large volumes and low loads. However, evidence regarding the role of rest intervals on metabolic stress and muscular adaptations is inconclusive. Thus, we aimed to investigate the effects of a strenuous RT model (jump-training) on skeletal muscle adaptations and metabolic stress, considering the scarce information about RT models for rats. We hypothesized that jump-training induces metabolic stress and influences negatively the growth of soleus (SOL) and extensor digitorum longus (EDL) muscles of rats. Male Wistar rats (aged 60 days) were randomly assigned to non-trained or trained groups (n = 8/group). Trained rats performed jump-training during 5 days a week for 1, 3, or 5 weeks with 30 s of inter-set rest intervals. Forty-eight hours after the experimental period, rats were euthanized and blood samples immediately drawn to measure creatine kinase activity, lactate and corticosterone concentrations. Muscle weight-to-body weight ratio (MW/BW), cross-sectional area (CSA) and myosin heavy chain (MHC) isoform expression were determined. Higher lactate levels occurred after 20 min of training in weeks 1 and 3. Corticosterone levels were higher after 5 weeks of training. Jump-training had negative effects on hypertrophy of types-I and II muscle fibers after 5 weeks of training, as evidenced by decreased CSA and reduced muscle weight. Our results demonstrated that pronounced metabolic stress and impairment of muscle growth might take place when variables of exercise training are not appropriately manipulated. Lay summary Resistance training (RT) has been used to increase muscle mass. In this regard, training variables (intensity, volume, and frequency) must be strictly controlled in order to evoke substantial muscular fitness. This study shows that rats submitted to 5 weeks of intensive resistance jump-training - high intensity, large volume, and short rest intervals - present high levels of blood corticosterone associated with negative effects on hypertrophy of types-I and II muscle fibers.


Assuntos
Hipertrofia/fisiopatologia , Músculo Esquelético/fisiopatologia , Treinamento Resistido , Estresse Fisiológico/fisiologia , Adaptação Fisiológica , Animais , Masculino , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/crescimento & desenvolvimento , Condicionamento Físico Animal/fisiologia , Distribuição Aleatória , Ratos , Ratos Wistar , Descanso
4.
Sci Rep ; 8(1): 17772, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30538258

RESUMO

Given the association between high aerobic capacity and the prevention of metabolic diseases, elucidating the mechanisms by which high aerobic capacity regulates whole-body metabolic homeostasis is a major research challenge. Oxidative post-translational modifications (Ox-PTMs) of proteins can regulate cellular homeostasis in skeletal and cardiac muscles, but the relationship between Ox-PTMs and intrinsic components of oxidative energy metabolism is still unclear. Here, we evaluated the Ox-PTM profile in cardiac and skeletal muscles of rats bred for low (LCR) and high (HCR) intrinsic aerobic capacity. Redox proteomics screening revealed different cysteine (Cys) Ox-PTM profile between HCR and LCR rats. HCR showed a higher number of oxidized Cys residues in skeletal muscle compared to LCR, while the opposite was observed in the heart. Most proteins with differentially oxidized Cys residues in the skeletal muscle are important regulators of oxidative metabolism. The most oxidized protein in the skeletal muscle of HCR rats was malate dehydrogenase (MDH1). HCR showed higher MDH1 activity compared to LCR in skeletal, but not cardiac muscle. These novel findings indicate a clear association between Cys Ox-PTMs and aerobic capacity, leading to novel insights into the role of Ox-PTMs as an essential signal to maintain metabolic homeostasis.


Assuntos
Cisteína/metabolismo , Metabolismo Energético/fisiologia , Estresse Oxidativo/fisiologia , Animais , Respiração Celular , Tolerância ao Exercício/fisiologia , Malato Desidrogenase/metabolismo , Masculino , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Oxirredução , Condicionamento Físico Animal/fisiologia , Resistência Física/fisiologia , Processamento de Proteína Pós-Traducional/fisiologia , Ratos , Corrida/fisiologia
5.
Sci Rep ; 7(1): 6998, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28765595

RESUMO

Cardiac cachexia (CC) is a common complication of heart failure (HF) associated with muscle wasting and poor patient prognosis. Although different mechanisms have been proposed to explain muscle wasting during CC, its pathogenesis is still not understood. Here, we described an integrative analysis between miRNA and mRNA expression profiles of muscle wasting during CC. Global gene expression profiling identified 1,281 genes and 19 miRNAs differentially expressed in muscle wasting during CC. Several of these deregulated genes are known or putative targets of the altered miRNAs, including miR-29a-3p, miR-29b-3p, miR-210-5p, miR-214, and miR-489. Gene ontology analysis on integrative mRNA/miRNA expression profiling data revealed miRNA interactions affecting genes that regulate extra-cellular matrix (ECM) organization, proteasome protein degradation, citric acid cycle and respiratory electron transport. We further identified 11 miRNAs, including miR-29a-3p and miR-29b-3p, which target 21 transcripts encoding the collagen proteins related to ECM organization. Integrative miRNA and mRNA global expression data allowed us to identify miRNA target genes involved in skeletal muscle wasting in CC. Our functional experiments in C2C12 cells confirmed that miR-29b down-regulates collagen genes and contributes to muscle cell atrophy. Collectively, our results suggest that key ECM-associated miRNAs and their target genes may contribute to CC in HF.


Assuntos
Caquexia/fisiopatologia , Perfilação da Expressão Gênica , Insuficiência Cardíaca/complicações , MicroRNAs/análise , Miocárdio/patologia , RNA Mensageiro/análise , Animais , Biometria , Modelos Animais de Doenças , Histocitoquímica , Ratos Wistar
6.
J Gerontol A Biol Sci Med Sci ; 71(5): 601-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-25991827

RESUMO

Physical training has been shown to be important to the control of muscle mass during aging, through the activation of several pathways including, IGF1-AKT and PGC-1α. Also, it was demonstrated that LRP130, a component of the PGC-1α complex, is important for the PGC-1α-dependent transcription of several mitochondrial genes in vivo. To explore the role of physical training during aging, we investigated the effects on muscle recovery after short-term immobilization followed by 3 or 7 days with aerobic or resistance training. Using morphological (myofibrillar adenosine triphosphatase activity, to assess the total muscle fiber cross-sectional area (CSA) and the frequency of specific fiber types), biochemical (myosin heavy chain), and molecular analyses (quantitative real-time PCR, functional pathways analyses, and Western blot), our results indicated that after an atrophic stimulus, only animals subjected to aerobic training showed entire recovery of cross-sectional area; aerobic training reduced the ubiquitin-proteasome system components involved in muscle atrophy after 3 days of recovery, and the upregulation in PGC-1α expression enhanced the process of muscle recovery by inhibiting the FoxO pathway, with the possible involvement of LRP130. These results suggest that aerobic training enhanced the muscle regeneration process after disuse-induced atrophy in aged rats possibly through of the LRP130/PGC-1α complex by inhibiting the ubiquitin-proteasome system.


Assuntos
Atrofia Muscular/terapia , Recuperação de Função Fisiológica/fisiologia , Treinamento Resistido , Fatores de Transcrição/fisiologia , Fatores Etários , Animais , Fatores de Transcrição Forkhead/fisiologia , Imobilização , Masculino , Proteínas Musculares/fisiologia , Músculo Esquelético/fisiopatologia , Atrofia Muscular/etiologia , Proteínas do Tecido Nervoso/fisiologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Ratos , Ratos Wistar , Proteínas Ligases SKP Culina F-Box/fisiologia , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases/fisiologia
7.
Am J Physiol Heart Circ Physiol ; 309(10): H1629-41, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26408546

RESUMO

Exercise training (ET) has beneficial effects on the myocardium in heart failure (HF) patients and in animal models of induced cardiac hypertrophy and failure. We hypothesized that if microRNAs (miRNAs) respond to changes following cardiac stress, then myocardial profiling of these miRNAs may reveal cardio-protective mechanisms of aerobic ET in HF. We used ascending aortic stenosis (AS) inducing HF in Wistar rats. Controls were sham-operated animals. At 18 wk after surgery, rats with cardiac dysfunction were randomized to 10 wk of aerobic ET (HF-ET) or to a heart failure sedentary group (HF-S). ET attenuated cardiac remodeling as well as clinical and pathological signs of HF with maintenance of systolic and diastolic function when compared with that of the HF-S. Global miRNA expression profiling of the cardiac tissue revealed 53 miRNAs exclusively dysregulated in animals in the HF-ET, but only 11 miRNAs were exclusively dysregulated in the HF-S. Out of 23 miRNAs that were differentially regulated in both groups, 17 miRNAs exhibited particularly high increases in expression, including miR-598, miR-429, miR-224, miR-425, and miR-221. From the initial set of deregulated miRNAs, 14 miRNAs with validated targets expressed in cardiac tissue that respond robustly to ET in HF were used to construct miRNA-mRNA regulatory networks that revealed a set of 203 miRNA-target genes involved in programmed cell death, TGF-ß signaling, cellular metabolic processes, cytokine signaling, and cell morphogenesis. Our findings reveal that ET attenuates cardiac abnormalities during HF by regulating cardiac miRNAs with a potential role in cardio-protective mechanisms through multiple effects on gene expression.


Assuntos
Remodelamento Atrial/genética , Regulação da Expressão Gênica , Insuficiência Cardíaca/genética , MicroRNAs/genética , Condicionamento Físico Animal , Comportamento Sedentário , Remodelação Ventricular/genética , Animais , Estenose da Valva Aórtica , Apoptose , Citocinas , Modelos Animais de Doenças , Morfogênese , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais
8.
PLoS One ; 9(10): e110020, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25330387

RESUMO

BACKGROUND: Heart failure (HF) is associated with cachexia and consequent exercise intolerance. Given the beneficial effects of aerobic exercise training (ET) in HF, the aim of this study was to determine if the ET performed during the transition from cardiac dysfunction to HF would alter the expression of anabolic and catabolic factors, thus preventing skeletal muscle wasting. METHODS AND RESULTS: We employed ascending aortic stenosis (AS) inducing HF in Wistar male rats. Controls were sham-operated animals. At 18 weeks after surgery, rats with cardiac dysfunction were randomized to 10 weeks of aerobic ET (AS-ET) or to an untrained group (AS-UN). At 28 weeks, the AS-UN group presented HF signs in conjunction with high TNF-α serum levels; soleus and plantaris muscle atrophy; and an increase in the expression of TNF-α, NFκB (p65), MAFbx, MuRF1, FoxO1, and myostatin catabolic factors. However, in the AS-ET group, the deterioration of cardiac function was prevented, as well as muscle wasting, and the atrophy promoters were decreased. Interestingly, changes in anabolic factor expression (IGF-I, AKT, and mTOR) were not observed. Nevertheless, in the plantaris muscle, ET maintained high PGC1α levels. CONCLUSIONS: Thus, the ET capability to attenuate cardiac function during the transition from cardiac dysfunction to HF was accompanied by a prevention of skeletal muscle atrophy that did not occur via an increase in anabolic factors, but through anti-catabolic activity, presumably caused by PGC1α action. These findings indicate the therapeutic potential of aerobic ET to block HF-induced muscle atrophy by counteracting the increased catabolic state.


Assuntos
Insuficiência Cardíaca/complicações , Músculo Esquelético/metabolismo , Atrofia Muscular/prevenção & controle , Esforço Físico , Animais , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Masculino , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Atrofia Muscular/etiologia , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Ratos , Ratos Wistar , Proteínas Ligases SKP Culina F-Box/genética , Proteínas Ligases SKP Culina F-Box/metabolismo , Proteínas com Motivo Tripartido , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...