Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neuroimmune Pharmacol ; 19(1): 9, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38430337

RESUMO

Primarily regarded as immune proteins, chemokines are emerging as a family of molecules serving neuromodulatory functions in the developing and adult brain. Among them, CXCL12 is constitutively and widely expressed in the CNS, where it was shown to act on cellular, synaptic, network, and behavioral levels. Its receptor, CXCR4, is abundant in the amygdala, a brain structure involved in pathophysiology of anxiety disorders. Dysregulation of CXCL12/CXCR4 signaling has been implicated in anxiety-related behaviors. Here we demonstrate that exogenous CXCL12 at 2 nM but not at 5 nM increased neuronal excitability in the lateral division of the rat central amygdala (CeL) which was evident in the Late-Firing but not Regular-Spiking neurons. These effects were blocked by AMD3100, a CXCR4 antagonist. Moreover, CXCL12 increased the excitability of the neurons of the basolateral amygdala (BLA) that is known to project to the CeL. However, CXCL12 increased neither the spontaneous excitatory nor spontaneous inhibitory synaptic transmission in the CeL. In summary, the data reveal specific activation of Late-Firing CeL cells along with BLA neurons by CXCL12 and suggest that this chemokine may alter information processing by the amygdala that likely contributes to anxiety and fear conditioning.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Núcleo Central da Amígdala , Ratos , Animais , Receptores CXCR4/metabolismo , Núcleo Central da Amígdala/metabolismo , Quimiocina CXCL12/metabolismo , Neurônios/metabolismo
2.
Hippocampus ; 33(7): 844-861, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36688619

RESUMO

The posterior hypothalamic area (PHa), including the supramammillary nucleus (SuM) and posterior hypothalamic nuclei, forms a crucial part of the ascending brainstem hippocampal synchronizing pathway, that is involved in the frequency programming and modulation of rhythmic theta activity generated in limbic structures. Recent investigations show that in addition to being a modulator of limbic theta activity, the PHa is capable of producing well-synchronized local theta field potentials by itself. The purpose of this study was to examine the ability of the PHa to generate theta field potentials and accompanying cell discharges in response to glutamatergic stimulation under both in vitro and in vivo conditions. The second objective was to examine the electrophysiological properties of neurons located in the SuM and posterior hypothalamic nuclei. Extracellular in vivo and in vitro as well as intracellular in vitro experiments revealed that glutamatergic stimulation of PHa with kainic acid induces well-synchronized local theta field oscillations in both the supramammillary and posterior hypothalamic nuclei. Furthermore, the glutamatergic PHa theta rhythm recorded extracellularly was accompanied by the activity of specific subtypes of theta-related neurons. We identify, for the first time, a subpopulation of supramammillary and posterior hypothalamic neurons that express clear subthreshold membrane potential oscillations in the theta frequency range.


Assuntos
Hipotálamo Posterior , Neurônios , Ritmo Teta , Ratos , Ratos Wistar , Eletroencefalografia , Hipotálamo Posterior/fisiologia , Ritmo Teta/fisiologia , Neurônios/fisiologia , Eletrofisiologia , Animais
3.
Int J Mol Sci ; 22(24)2021 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-34948401

RESUMO

Theta oscillations generated in hippocampal (HPC) and cortical neuronal networks are involved in various aspects of brain function, including sensorimotor integration, movement planning, memory formation and attention. Disruptions of theta rhythms are present in individuals with brain disorders, including epilepsy and Alzheimer's disease. Theta rhythm generation involves a specific interplay between cellular (ion channel) and network (synaptic) mechanisms. HCN channels are theta modulators, and several medications are known to enhance their activity. We investigated how different doses of lamotrigine (LTG), an HCN channel modulator, and antiepileptic and neuroprotective agent, would affect HPC theta rhythms in acute HPC slices (in vitro) and anaesthetized rats (in vivo). Whole-cell patch clamp recordings revealed that LTG decreased GABAA-fast transmission in CA3 cells, in vitro. In addition, LTG directly depressed CA3 and CA1 pyramidal neuron excitability. These effects were partially blocked by ZD 7288, a selective HCN blocker, and are consistent with decreased excitability associated with antiepileptic actions. Lamotrigine depressed HPC theta oscillations in vitro, also consistent with its neuronal depressant effects. In contrast, it exerted an opposite, enhancing effect, on theta recorded in vivo. The contradictory in vivo and in vitro results indicate that LTG increases ascending theta activating medial septum/entorhinal synaptic inputs that over-power the depressant effects seen in HPC neurons. These results provide new insights into LTG actions and indicate an opportunity to develop more precise therapeutics for the treatment of dementias, memory disorders and epilepsy.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Anticonvulsivantes/farmacologia , Hipocampo/efeitos dos fármacos , Lamotrigina/farmacologia , Ritmo Teta/efeitos dos fármacos , Animais , Região CA3 Hipocampal/citologia , Região CA3 Hipocampal/efeitos dos fármacos , Região CA3 Hipocampal/fisiologia , Hipocampo/citologia , Hipocampo/fisiologia , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Wistar , Sinapses/efeitos dos fármacos , Sinapses/fisiologia , Ácido gama-Aminobutírico/metabolismo
4.
Neuropharmacology ; 198: 108779, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34481835

RESUMO

The basal amygdala (BA) has been implicated in encoding fear and its extinction. The level of serotonin (5-HT) in the BA increases due to arousal and stress related to aversive stimuli. The effects of 5-HT7 receptor (5-HT7R) activation and blockade on the activity of BA neurons have not yet been investigated. In the present study, a transgenic mouse line carrying green fluorescent protein (GFP) reporter gene was used to identify neurons that express the 5-HT7R. GFP immunoreactivity was present mainly in cells that also expressed GAD67 or parvalbumin (PV), the phenotypic markers for GABAergic interneurons. Most cells showing GFP fluorescence demonstrated firing patterns characteristic of BA inhibitory interneurons. Activation of 5-HT7Rs resulted in a depolarization and/or occurrence of spontaneous spiking activity of BA interneurons that was accompanied by an increase in the mean frequency and mean amplitude of spontaneous inhibitory postsynaptic currents (sIPSCs) recorded from BA principal neurons. These effects were blocked by a specific 5-HT7R antagonist, SB269970 and were absent in slices from 5-HT7R knockout mice. Activation of 5-HT7Rs also decreased the mean frequency of spontaneous excitatory postsynaptic currents (sEPSCs) recorded from BA principal neurons, which was blocked by the GABAA receptor antagonist picrotoxin. Neither inhibitory nor excitatory miniature postsynaptic currents (mIPSCs/mEPSCs) were affected by 5-HT7R activation. These results show that in the BA 5-HT7Rs stimulate an activity-dependent enhancement of inhibitory input from local interneurons to BA principal neurons and provide insights about the possible involvement of BA serotonergic receptors in neuronal mechanisms underlying fear memory.


Assuntos
Tonsila do Cerebelo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Receptores de Serotonina/efeitos dos fármacos , Antagonistas da Serotonina/farmacologia , Agonistas do Receptor de Serotonina/farmacologia , Sinapses/efeitos dos fármacos , Animais , Fenômenos Eletrofisiológicos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Neurônios GABAérgicos/efeitos dos fármacos , Proteínas de Fluorescência Verde , Interneurônios/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenóis/farmacologia , Picrotoxina/farmacologia , Receptores de GABA-A/efeitos dos fármacos , Receptores de Serotonina/genética , Sulfonamidas/farmacologia
5.
Pharmacol Rep ; 73(6): 1595-1625, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34498203

RESUMO

Accumulating evidence highlights chemokines as key mediators of the bidirectional crosstalk between neurons and glial cells aimed at preserving brain functioning. The multifaceted role of these immune proteins in the CNS is mirrored by the complexity of the mechanisms underlying its biological function, including biased signaling. Neurons, only in concert with glial cells, are essential players in the modulation of brain homeostatic functions. Yet, attempts to dissect these complex multilevel mechanisms underlying coordination are still lacking. Therefore, the purpose of this review is to summarize the current knowledge about mechanisms underlying chemokine regulation of neuron-glia crosstalk linking molecular, cellular, network, and behavioral levels. Following a brief description of molecular mechanisms by which chemokines interact with their receptors and then summarizing cellular patterns of chemokine expression in the CNS, we next delve into the sequence and mechanisms of chemokine-regulated neuron-glia communication in the context of neuroprotection. We then define the interactions with other neurotransmitters, neuromodulators, and gliotransmitters. Finally, we describe their fine-tuning on the network level and the behavioral relevance of their modulation. We believe that a better understanding of the sequence and nature of events that drive neuro-glial communication holds promise for the development of new treatment strategies that could, in a context- and time-dependent manner, modulate the action of specific chemokines to promote brain repair and reduce the neurological impairment.


Assuntos
Encéfalo/fisiologia , Sistema Nervoso Central/fisiologia , Quimiocinas/metabolismo , Animais , Comunicação Celular/fisiologia , Humanos , Neuroglia/metabolismo , Neurônios/metabolismo , Neuroproteção/fisiologia
7.
Neuropharmacology ; 177: 108248, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32736087

RESUMO

Accumulating evidence suggests a widespread role of serotonin 5-HT7 receptors (5-HT7Rs) in the physiology of cognitive and affective processing. However, we still lack insights into 5-HT7R electrophysiology. Studies analyzing the 5-HT7R-mediated changes in CA1 pyramidal neuron activity revealed that 5-HT7R activation leads to the opening of hyperpolarization-activated cyclic nucleotide-gated cation channels (HCNs). However, our group and others have shown that CA1 pyramidal cells increase their excitability following 5-HT7R activation, an effect which cannot be explained by HCN channel opening. This suggests a different ionic mechanism might be responsible. To investigate this, we performed whole-cell patch clamp recordings of CA1 pyramidal cells in rat brain slices. It was found that acute 5-HT7R activation increased membrane excitability and decreased spiking latency. Both effects were blocked by a selective 5-HT7R antagonist. Spike latency in CA1 pyramidal cells is known to be regulated by transient outward voltage-dependent A-type potassium channels. Subsequent voltage clamp recordings revealed that acute 5-HT7R activation inhibited A-type potassium currents. Pharmacological block of Kv4.2/4.3 potassium channel subunits prevented the 5-HT7R agonist-induced changes in excitability and spiking latency, whereas blocking HCN channels had no influence on these effects. Taken together, the results reveal an ionic mechanism previously not known to be associated with 5-HT7R activation. Inhibition of A-type potassium channels can fully account for increased CA1 pyramidal cell excitability after 5-HT7R activation. These results can help explain a number of behavioral and physiological findings and will hopefully lead to a better understanding of 5-HT7 receptor signaling in health and disease.


Assuntos
Região CA1 Hipocampal/metabolismo , Proteínas Interatuantes com Canais de Kv/antagonistas & inibidores , Proteínas Interatuantes com Canais de Kv/metabolismo , Células Piramidais/metabolismo , Receptores de Serotonina/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Região CA1 Hipocampal/efeitos dos fármacos , Masculino , Técnicas de Cultura de Órgãos , Bloqueadores dos Canais de Potássio/farmacologia , Células Piramidais/efeitos dos fármacos , Ratos , Ratos Wistar , Antagonistas da Serotonina/farmacologia , Agonistas do Receptor de Serotonina/farmacologia
8.
Eur J Neurosci ; 52(5): 3295-3305, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32402149

RESUMO

Early life adversity exerts a detrimental influence on developing brain neuronal networks and its consequences may include mental health disorders. In rats, prenatal stress may lead to anxiety and depressive-like behavior in the offspring. Several lines of evidence implicated an involvement of prenatal stress in alterations of the brain serotonergic system functions, but the effects of prenatal stress on its core, the dorsal raphe nucleus (DRN), still remain incompletely understood. The present study was aimed at finding whether prenatal stress induces modifications in the glutamatergic and GABAergic inputs to DRN projection cells and whether it affects DRN 5-HT7 receptors, which modulate activity of these synapses. Prenatal stress resulted in an increase in basal frequency of spontaneous excitatory postsynaptic currents (sEPSCs) and in a decrease in basal frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) recorded from putative projection neurons in DRN slices ex vivo. While there were no changes in the excitability of DRN projection neurons, the 5-HT7 receptor-mediated reduction in the sEPSC frequency and rise in the sIPSC frequency, seen in control rats, were largely absent in slices obtained from prenatally stressed rats. Repeated administration of SB 269970, a 5-HT7 receptor antagonist, resulted in a reversal of prenatal stress-induced alterations in 5-HT7 receptor-mediated effects on the sEPSC/sIPSC frequency. Moreover, the treatment reversed prenatal stress-induced alterations in basal excitatory transmission and partially reversed the effect of stress on basal inhibitory transmission in the DRN.


Assuntos
Núcleo Dorsal da Rafe , Serotonina , Animais , Potenciais Pós-Sinápticos Inibidores , Fenóis , Ratos , Sulfonamidas , Transmissão Sináptica
9.
Neuropsychopharmacology ; 45(2): 404-415, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31254970

RESUMO

To date, neurons have been the primary focus of research on the role of glucocorticoids in the regulation of brain function and pathological behaviors, such as addiction. Astrocytes, which are also glucocorticoid-responsive, have been recently implicated in the development of drug abuse, albeit through as yet undefined mechanisms. Here, using a spectrum of tools (whole-transcriptome profiling, viral-mediated RNA interference in vitro and in vivo, behavioral pharmacology and electrophysiology), we demonstrate that astrocytes in the nucleus accumbens (NAc) are an important locus of glucocorticoid receptor (GR)-dependent transcriptional changes that regulate rewarding effects of morphine. Specifically, we show that targeted knockdown of the GR in the NAc astrocytes enhanced conditioned responses to morphine, with a concomitant inhibition of morphine-induced neuronal excitability and plasticity. Interestingly, GR knockdown did not influence sensitivity to cocaine. Further analyses revealed GR-dependent regulation of astroglial metabolism. Notably, GR knockdown inhibited induced by glucocorticoids lactate release in astrocytes. Finally, lactate administration outbalanced conditioned responses to morphine in astroglial GR knockdown mice. These findings demonstrate a role of GR-dependent regulation of astrocytic metabolism in the NAc and a key role of GR-expressing astrocytes in opioid reward processing.


Assuntos
Analgésicos Opioides/farmacologia , Astrócitos/metabolismo , Condicionamento Psicológico/fisiologia , Ácido Láctico/metabolismo , Morfina/farmacologia , Receptores de Glucocorticoides/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Células Cultivadas , Condicionamento Psicológico/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
10.
Neural Plast ; 2019: 3219490, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31511771

RESUMO

Ketamine, a N-methyl-D-aspartate (NMDA) receptor antagonist, exerts rapid antidepressant effects in human patients and ameliorates depressive-like behavioral effects of chronic stress in animal models. Chronic stress and elevated corticosterone levels have been shown to modify serotonin (5-HT) neurotransmission, and ketamine's antidepressant-like activity involves a 5-HT-dependent mechanism. However, it is not known if and how ketamine affects the electrophysiological characteristics of neurons and synaptic transmission within the dorsal raphe nucleus (DRN), the main source of 5-HT forebrain projections. Our study was aimed at investigating the effects of a single ketamine administration on excitatory and inhibitory transmission in the DRN of rats which had previously been administered corticosterone twice daily for 7 days. Spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs) were then recorded from DRN projection cells in ex vivo slice preparations obtained 24 h after ketamine injection. Repeated corticosterone administration increased sEPSC frequency and decreased sIPSC frequency in DRN projection cells. There were no changes either in the amplitude of postsynaptic currents or in the excitability of these cells. In slices prepared from rats with ketamine administered after the end of corticosterone treatment, the frequencies of sEPSCs and sIPSCs were similar to those in control preparations. These data indicate that a single administration of ketamine reversed the effects of corticosterone on excitatory and inhibitory transmission in the DRN.


Assuntos
Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Ketamina/farmacologia , Neurônios Serotoninérgicos/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Animais , Antidepressivos/farmacologia , Corticosterona/farmacologia , Ketamina/administração & dosagem , Masculino , Ratos Wistar , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Neurônios Serotoninérgicos/fisiologia , Serotonina/farmacologia , Potenciais Sinápticos/efeitos dos fármacos , Transmissão Sináptica/fisiologia
11.
Psychopharmacology (Berl) ; 235(12): 3381-3390, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30267130

RESUMO

RATIONALE: Chronic stress and corticosterone have been shown to affect serotonin (5-HT) neurotransmission; however, the influence of stress on the activity of the dorsal raphe nucleus (DRN), the main source of 5-HT in the forebrain, is not well understood. In particular, it is unknown if and how stress modifies DRN 5-HT7 receptors, which are involved in the modulation of the firing of local inhibitory interneurons responsible for regulating the activity of DRN projection cells. OBJECTIVES: Our study aimed to investigate the effect of repeated corticosterone injections on the modulation of the inhibitory transmission within the DRN by 5-HT7 receptors and whether it could be reversed by treatment with a 5-HT7 receptor antagonist. METHODS: Male Wistar rats received corticosterone injections repeated twice daily for 14 days. Spontaneous inhibitory postsynaptic currents (sIPSCs) were then recorded from DRN projection cells in ex vivo slice preparations obtained 24 h after the last injection. RESULTS: Repeated corticosterone administration resulted in decreased frequency, but not amplitude, of sIPSCs in DRN projection cells. There were no changes in the excitability of these cells; however, corticosterone treatment suppressed the 5-HT7 receptor-mediated increase in sIPSC frequency. Administration of the 5-HT7 receptor antagonist SB 269970 for 7 days beginning on the eighth day of corticosterone treatment reversed the detrimental effects of corticosterone on 5-HT7 receptor reactivity and GABAergic transmission in the DRN. CONCLUSIONS: Elevated corticosterone level reduces DRN 5HT7 receptor reactivity and decreases GABAergic transmission within the DRN, which can be reversed by the 5-HT7 receptor antagonist SB 269970.


Assuntos
Corticosterona/toxicidade , Núcleo Dorsal da Rafe/fisiologia , Neurônios GABAérgicos/fisiologia , Fenóis/farmacologia , Receptores de Serotonina/fisiologia , Antagonistas da Serotonina/farmacologia , Sulfonamidas/farmacologia , Animais , Núcleo Dorsal da Rafe/efeitos dos fármacos , Neurônios GABAérgicos/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/fisiologia , Masculino , Técnicas de Cultura de Órgãos , Ratos , Ratos Wistar , Serotonina/farmacologia
12.
Front Mol Neurosci ; 11: 456, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30618608

RESUMO

N-methyl-D-aspartate receptor (NMDAR) modulators induce rapid and sustained antidepressant like-activity in rodents through a molecular mechanism of action that involves the activation of Ca2+ dependent signaling pathways. Moreover, ketamine, a global NMDAR antagonist is a potent, novel, and atypical drug that has been successfully used to treat major depressive disorder (MDD). However, because ketamine evokes unwanted side effects, alternative strategies have been developed for the treatment of depression. The objective of the present study was to determine the antidepressant effects of either a single dose of hyperforin or lanicemine vs. their combined effects in mice. Hyperforin modulates intracellular Ca2+ levels by activating Ca2+-conducting non-selective canonical transient receptor potential 6 channel (TRPC6) channels. Lanicemine, on the other hand, blocks NMDARs and regulates Ca2+ dependent processes. To evaluate the antidepressant-like activity of hyperforin and lanicemine, a set of in vivo (behavioral) and in vitro methods (western blotting, Ca2+ imaging studies, electrophysiological, and radioligand binding assays) was employed. Combined administration of hyperforin and lanicemine evoked long-lasting antidepressant-like effects in both naïve and chronic corticosterone-treated mice while also enhancing the expression of the synapsin I, GluA1 subunit, and brain derived neurotrophic factor (BDNF) proteins in the frontal cortex. In Ca2+ imaging studies, lanicemine enhanced Ca2+ influx induced by hyperforin. Moreover, compound such as MK-2206 (Akt kinase inhibitor) inhibited the antidepressant-like activity of hyperforin in the tail suspension test (TST). Hyperforin reversed disturbances induced by MK-801 in the novel object recognition (NOR) test and had no effects on NMDA currents and binding to NMDAR. Our results suggest that co-administration of hyperforin and lanicemine induces long-lasting antidepressant effects in mice and that both substances may have different molecular targets.

13.
Mol Neurobiol ; 55(2): 1244-1258, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28116546

RESUMO

Neurological symptoms of acute liver failure (ALF) reflect decreased excitatory transmission, but the status of ALF-affected excitatory synapse has not been characterized in detail. We studied the effects of ALF in mouse on synaptic transmission and plasticity ex vivo and its relation to distribution of (i) synaptic vesicles (sv) and (ii) functional synaptic proteins within the synapse. ALF-competent neurological and biochemical changes were induced in mice with azoxymethane (AOM). Electrophysiological characteristics (long-term potentiation, whole-cell recording) as well as synapse ultrastructure were evaluated in the cerebral cortex. Also, sv were quantified in the presynaptic zone by electron microscopy. Finally, presynaptic proteins in the membrane-enriched (P2) and cytosolic (S2) fractions of cortical homogenates were quantitated by Western blot. Slices derived from symptomatic AOM mice presented a set of electrophysiological correlates of impaired transmitter release including decreased field potentials (FPs), increased paired-pulse facilitation (PPF), and decreased frequency of spontaneous and miniature excitatory postsynaptic currents (sEPSCs/mEPSCs) accompanied by reduction of the spontaneous transmitter release-driving protein, vti1A. Additionally, an increased number of sv per synapse and a decrease of P2 content and/or P2/S2 ratio for sv-associated proteins, i.e. synaptophysin, synaptotagmin, and Munc18-1, were found, in spite of decreased content of the sv-docking protein, syntaxin-1. Slices from AOM-treated asymptomatic mice showed impaired long-term potentiation (LTP) and increased PPF but no changes in transmitter release or presynaptic protein composition. Our findings demonstrate that a decrease of synaptic transmission in symptomatic ALF is associated with inefficient recruitment of sv proteins and/or impaired sv trafficking to transmitter release sites.


Assuntos
Córtex Cerebral/fisiopatologia , Falência Hepática Aguda/fisiopatologia , Plasticidade Neuronal/fisiologia , Terminações Pré-Sinápticas/fisiologia , Transmissão Sináptica/fisiologia , Amônia/sangue , Animais , Citocinas/sangue , Modelos Animais de Doenças , Falência Hepática Aguda/sangue , Masculino , Camundongos , Técnicas de Patch-Clamp , Sinapses
14.
J Neuroimmunol ; 311: 79-87, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28844502

RESUMO

CXCL12/SDF-1α and CX3CL1/fractalkine are constitutively expressed in the brain, which indicates their significant functions. Emerging evidence highlights the role of astrocytes and the immune system in the pathophysiology of stress-related disorders. The aim of this study was to assess whether prenatal stress affects chemokine signaling, cell viability/activation, and the iNOS pathway in astroglial cultures. Our results showed that prenatal stress lowered astrocyte viability and simultaneously increased GFAP expression. Furthermore, CX3CL1 production and the CXCL12/CXCR4-7 axis were also altered by prenatal stress. Taken together, malfunctions caused by prenatal stress may adversely influence brain development, leading to long-term effects on adult brain function and behavior.


Assuntos
Astrócitos/metabolismo , Quimiocinas/metabolismo , Efeitos Tardios da Exposição Pré-Natal/patologia , Transdução de Sinais/fisiologia , Estresse Psicológico/patologia , Animais , Animais Recém-Nascidos , Astrócitos/imunologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Córtex Cerebral/patologia , Quimiocina CXCL1/genética , Quimiocina CXCL1/metabolismo , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Quimiocinas/genética , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , L-Lactato Desidrogenase/metabolismo , Óxido Nítrico/metabolismo , Gravidez , Ratos , Ratos Sprague-Dawley , Regulação para Cima/fisiologia
15.
Front Psychol ; 8: 514, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28421027

RESUMO

It has been hypothesized that efficient reading is possible because all reading scripts have been matched, through cultural evolution, to the natural capabilities of the visual cortex. This matching has resulted in all scripts being made of line-junctions, such as T, X, or L. Our aim was to test a critical prediction of this hypothesis: visual reading in an atypical script that is devoid of line-junctions (such as the Braille alphabet read visually) should be much less efficient than reading in a "normal" script (e.g., Cyrillic). Using a lexical decision task, we examined Visual Braille reading speed and efficiency in sighted Braille teachers. As a control, we tested learners of a natural visual script, Cyrillic. Both groups participated in a two semester course of either visual Braille or Russian while their reading speed and accuracy was tested at regular intervals. The results show that visual Braille reading is slow, prone to errors and highly serial, even in Braille readers with years of prior reading experience. Although subjects showed some improvements in their visual Braille reading accuracy and speed following the course, the effect of word length on reading speed (typically observed in beginning readers) was remained very sizeable through all testing sessions. These results are in stark contrast to Cyrillic, a natural script, where only 3 months of learning were sufficient to achieve relative proficiency. Taken together, these results suggest that visual features such as line junctions and their combinations might be necessary for efficient reading.

16.
eNeuro ; 3(3)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27294197

RESUMO

Plasticity of the brain's dopamine system plays a crucial role in adaptive behavior by regulating appetitive motivation and the control of reinforcement learning. In this study, we investigated drug- and natural-reward conditioned behaviors in a mouse model in which the NMDA receptor-dependent plasticity of dopaminoceptive neurons was disrupted. We generated a transgenic mouse line with inducible selective inactivation of the NR1 subunit in neurons expressing dopamine D1 receptors (the NR1(D1CreERT2) mice). Whole-cell recordings of spontaneous EPSCs on neurons in the nucleus accumbens confirmed that a population of neurons lacked the NMDA receptor-dependent component of the current. This effect was accompanied by impaired long-term potentiation in the nucleus accumbens and in the CA1 area of the ventral, but not the dorsal, hippocampus. Mutant mice did not differ from control animals when tested for pavlovian or instrumental conditioning. However, NR1(D1CreERT2) mice acquired no preference for a context associated with administration of drugs of abuse. In the conditioned place preference paradigm, mutant mice did not spend more time in the context paired with cocaine, morphine, or ethanol, although these mice acquired a preference for sucrose jelly and an aversion to naloxone injections, as normal. Thus, we observed that the selective inducible ablation of the NMDA receptors specifically blocks drug-associated context memory with no effect on positive reinforcement in general.


Assuntos
Condicionamento Psicológico/efeitos dos fármacos , Condicionamento Psicológico/fisiologia , Dopamina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/metabolismo , Fármacos do Sistema Nervoso Central/farmacologia , Cocaína/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Feminino , Drogas Ilícitas/farmacologia , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Morfina/farmacologia , Naloxona/farmacologia , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Núcleo Accumbens/citologia , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Recompensa , Comportamento Espacial/efeitos dos fármacos , Comportamento Espacial/fisiologia , Técnicas de Cultura de Tecidos
17.
Pflugers Arch ; 468(4): 679-91, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26696244

RESUMO

It has been demonstrated that stress impairs performance of skilled reaching and walking tasks in rats due to the action of glucocorticoids involved in the stress response. Skilled reaching and walking are controlled by the primary motor cortex (M1); however, it is not known whether stress-related impairments in skilled motor tasks are related to functional and/or structural alterations within the M1. We studied the effects of single and repeated injections of corticosterone (twice daily for 7 days) on spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs) recorded from layer II/III pyramidal neurons in ex vivo slices of the M1, prepared 2 days after the last administration of the hormone. We also measured the density of dendritic spines on pyramidal cells and the protein levels of selected subunits of AMPA, NMDA, and GABAA receptors after repeated corticosterone administration. Repeatedly administered corticosterone induced an increase in the frequency but not in the amplitude of sEPSCs, while a single administration had no effect on the recorded excitatory currents. The frequency and amplitude of sIPSCs as well as the excitability of pyramidal cells were changed neither after single nor after repeated corticosterone administration. Treatment with corticosterone for 7 days did not modify the density of dendritic spines on pyramidal neurons. Corticosterone influenced neither the protein levels of GluA1, GluA2, GluN1, GluN2A, and GluN2B subunits of glutamate receptors nor those of α1, ß2, and γ2 subunits of the GABAA receptor. The increase in sEPSCs frequency induced by repeated corticosterone administration faded out within 7 days. These data indicate that prolonged administration of exogenous corticosterone selectively and reversibly enhances glutamatergic, but not GABAergic transmission in the rat motor cortex. Our results suggest that corticosterone treatment results in an enhancement of spontaneous glutamate release from presynaptic terminals in the M1 and thereby uncovers a potential mechanism underlying stress-induced motor functions impairment.


Assuntos
Corticosterona/farmacologia , Potenciais Pós-Sinápticos Excitadores , Ácido Glutâmico/metabolismo , Potenciais Pós-Sinápticos Inibidores , Córtex Motor/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo , Animais , Células Cultivadas , Corticosterona/administração & dosagem , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/fisiologia , Masculino , Córtex Motor/citologia , Córtex Motor/metabolismo , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Células Piramidais/fisiologia , Ratos , Ratos Wistar , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinapses/fisiologia
18.
Front Cell Neurosci ; 9: 324, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26347612

RESUMO

The 5-HT7 receptor is one of the several serotonin (5-HT) receptor subtypes that are expressed in the dorsal raphe nucleus (DRN). Some earlier findings suggested that 5-HT7 receptors in the DRN were localized on GABAergic interneurons modulating the activity of 5-HT projection neurons. The aim of the present study was to find out how the 5-HT7 receptor modulates the GABAergic synaptic input to putative 5-HT DRN neurons, and whether blockade of the 5-HT7 receptor would affect the release of 5-HT in the target structure. Male Wistar rats with microdialysis probes implanted in the prefrontal cortex (PFC) received injections of the 5-HT7 receptor antagonist (2R)-1-[(3-hydroxyphenyl)sulfonyl]-2-[2-(4-methyl-1-piperidinyl)ethyl]pyrrolidine hydrochloride (SB 269970), which induced an increase in the levels of 5-HT and its metabolite, 5-hydroxyindoleacetic acid (5-HIAA) in the PFC. In another set of experiments whole-cell recordings from presumed projection neurons were carried out using DRN slices. SB 269970 application resulted in depolarization and in an increase in the firing frequency of the cells. In order to activate 5-HT7 receptors, 5-carboxamidotryptamine (5-CT) was applied in the presence of N-[2-[4-(2-methoxyphenyl)-1piperazinyl]ethyl]-N-2-pyridinylcyclohexanecarboxamide (WAY100635). Hyperpolarization of cells and a decrease in the firing frequency were observed after activation of the 5-HT7 receptor. Blockade of 5-HT7 receptors caused a decrease in the mean frequency of spontaneous inhibitory postsynaptic currents (sIPSCs), while its activation induced an increase. The mechanism of these effects appears to involve tonically-active 5-HT7 receptors modulating firing and/or GABA release from inhibitory interneurons which regulate the activity of DRN serotonergic projection neurons.

19.
PLoS One ; 10(3): e0119407, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25749097

RESUMO

The effects of prenatal stress procedure were investigated in 3 months old male rats. Prenatally stressed rats showed depressive-like behavior in the forced swim test, including increased immobility, decreased mobility and decreased climbing. In ex vivo frontal cortex slices originating from prenatally stressed animals, the amplitude of extracellular field potentials (FPs) recorded in cortical layer II/III was larger, and the mean amplitude ratio of pharmacologically-isolated NMDA to the AMPA/kainate component of the field potential--smaller than in control preparations. Prenatal stress also resulted in a reduced magnitude of long-term potentiation (LTP). These effects were accompanied by an increase in the mean frequency, but not the mean amplitude, of spontaneous excitatory postsynaptic currents (sEPSCs) in layer II/III pyramidal neurons. These data demonstrate that stress during pregnancy may lead not only to behavioral disturbances, but also impairs the glutamatergic transmission and long-term synaptic plasticity in the frontal cortex of the adult offspring.


Assuntos
Comportamento Animal , Lobo Frontal , Potenciação de Longa Duração , Efeitos Tardios da Exposição Pré-Natal , Células Piramidais , Animais , Feminino , Lobo Frontal/metabolismo , Lobo Frontal/patologia , Lobo Frontal/fisiopatologia , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/patologia , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Células Piramidais/metabolismo , Células Piramidais/patologia , Ratos , Ratos Sprague-Dawley
20.
Pharmacol Rep ; 67(1): 123-8, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25560585

RESUMO

BACKGROUND: The mechanisms of the influence of prolonged stress on glutamatergic transmission and synaptic plasticity in the cerebral cortex remain poorly understood. The purpose of this study was to determine an involvement of interleukin-1ß (IL-1ß) in the effects of repeated restraint stress on excitatory synaptic transmission and long-term potentiation (LTP) in the rat frontal cortex. METHODS: The effects of restraint stress lasting for 10 min, repeated twice daily for 3 consecutive days were studied ex vivo in the rat frontal cortex slices prepared 24h after the last stress session. Rats received intraperitoneal injections of interleukin-1ß antibody. In a separate experimental group, rats received injections of IL-1ß. Field potentials were recorded in the cortical layer II/III. RESULTS: In slices originating from stressed animals, the amplitude of field potentials was increased. Consistent with the previous studies, restraint stress resulted in a reduced magnitude of LTP. Similar effects were evident after administration of IL-1ß. Stress-induced modifications of the glutamatergic transmission and synaptic plasticity were prevented by interleukin-1ß antibody, which was administered 15 min before each restraint session. CONCLUSIONS: These data point to an involvement of peripherally produced IL-1ß in mediating the influence of repeated restraint stress on the functions of the frontal cortex.


Assuntos
Anticorpos Bloqueadores/farmacologia , Interleucina-1beta/imunologia , Potenciação de Longa Duração/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/fisiopatologia , Transmissão Sináptica/efeitos dos fármacos , Hormônio Adrenocorticotrópico/sangue , Animais , Corticosterona/sangue , Potenciais Evocados/efeitos dos fármacos , Hormônios/sangue , Técnicas In Vitro , Masculino , Ratos , Ratos Wistar , Restrição Física
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...