Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 15(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37111213

RESUMO

The effects of maternal diet on the neuroimmune responses of the offspring remain to be elucidated. We investigated the impact of maternal ketogenic diet (KD) on the NLRP3 inflammasome response in the offspring's brain. C57BL/6 female mice were randomly allocated into standard diet (SD) and ketogenic diet (KD) groups for 30 days. After mating, the presence of sperm in the vaginal smear was considered day 0 of pregnancy, and female mice continued their respective diets during pregnancy and the lactation period. Following birth, pups were further allocated into two groups and given either LPS or intraperitoneal saline on postnatal (PN) days 4, 5 and 6; they were sacrificed on PN11 or PN21. Neuronal densities were significantly lower globally in the KD group when compared to the SD group at PN11. Neuronal density in the prefrontal cortex (PFC) and dentate gyrus (DG) regions were also significantly lower in the KD group when compared to the SD group at PN21. Following administration of LPS, the decrease in the neuronal count was more prominent in the SD group when compared to the KD group in the PFC and DG regions at PN11 and PN21. NLRP3 and IL-1ß were higher in the KD group than in the SD group at PN21 in the PFC, CA1 and DG regions, and were significantly lower in the DG region of the KD group especially when compared to the SD group following LPS. Results of our study reveal that maternal KD negatively affects the offspring's brain in the mouse model. The effects of KD exhibited regional variations. On the other hand, in the presence of KD exposure, NLRP3 expression after LPS injection was lower in the DG and CA1 areas but not in the PFC when compared to SD group. Further experimental and clinical studies are warranted to elucidate the molecular mechanisms underlying the impact of antenatal KD exposure and regional discrepancies on the developing brain.


Assuntos
Dieta Cetogênica , Inflamassomos , Feminino , Masculino , Camundongos , Animais , Gravidez , Inflamassomos/metabolismo , Dieta Cetogênica/efeitos adversos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Sêmen , Encéfalo/metabolismo
2.
Mol Cell Neurosci ; 125: 103850, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36965549

RESUMO

Despite current advancements in neonatal care, hyperbilirubinemia resulting in bilirubin-induced neurological dysfunction (BIND) continues to be one of the major reasons of mortality or lifelong disability. Although the exact mechanisms underlying brain injury upon bilirubin exposure remains unelucidated, inflammation is considered to be one of the major contributors to BIND. This study investigates the role of the NLRP3 inflammasome in bilirubin-induced injury using in vitro and in vivo models. We successfully demonstrated that the upregulation of NLRP3 expression is significantly associated with the release of active caspase-1 and IL-1ß in N9 microglial cells exposed to bilirubin. Functional in vitro experiments with NLRP3 siRNA confirms that bilirubin-induced inflammasome activation and cell death are mediated by the NLRP3 inflammasome. Following injection of bilirubin into the cisterna magna of a neonatal mouse, activation of the NLRP3 inflammasome and microglia were determined by double staining with Iba1-NLRP3 and Iba1-Caspase-1. Upon injection of bilirubin into the cisterna magna, neuronal loss was significantly higher in the wild-type mouse compared to Nlrp3-/- and Caspase-1-/- strains. Collectively, these data indicate that NLRP3 inflammasome has a crucial role in microglial activation and bilirubin-induced neuronal damage.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Camundongos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Microglia/metabolismo , Bilirrubina/farmacologia , Caspases/metabolismo
3.
Neurosci Lett ; 738: 135389, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32949661

RESUMO

Despite widely known detrimental effects on the developing brain, supplemental oxygen is still irreplaceable in the management of newborn infants with respiratory distress. Identifying downstream mechanisms underlying oxygen toxicity is a key step for development of new neuroprotective strategies. Main purpose of this study is to investigate whether NLRP3 inflammasome activation has a role in the pathogenesis of hyperoxia-induced preterm brain injury. C57BL6 pups were randomly divided into either a hyperoxia group (exposed to 90 % oxygen from birth until postnatal day 7) or control group (maintained in room air; 21 % O2). At postnatal day 7, all animals were sacrificed. Immunohistochemical examination revealed that hyperoxic exposure for seven days resulted in a global increase in NLRP3 and IL-1ß immunopositive cells in neonatal mouse brain (p ≤ 0.001). There was a significant rise in Caspase-1 positive cell count in prefrontal and parietal area in the hyperoxia group when compared with controls (p ≤ 0.001). Western blot analysis of brain tissues showed elevated NLRP3, IL-1ß and Caspase-1 protein levels in the hyperoxia group when compared with controls (p ≤ 0.001). To the best of our knowledge, this is the first study that investigates an association between hyperoxia and establishment of NLRP3 inflammasome in preterm brain.


Assuntos
Encéfalo/efeitos dos fármacos , Hiperóxia/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/efeitos dos fármacos , Oxigênio , Animais , Animais Recém-Nascidos , Encéfalo/metabolismo , Humanos , Recém-Nascido , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Oxigênio/metabolismo , Oxigênio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...