Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ann Pharm Fr ; 82(5): 822-829, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38657857

RESUMO

Numerous studies suggest that blood-brain barrier (BBB) dysfunction may contribute to the progression of Alzheimer's disease (AD). Clinically available neuroimaging methods are needed for quantitative "scoring" of BBB permeability in AD patients. [18F]2-fluoro-2-deoxy-sorbitol ([18F]FDS), which can be easily obtained from simple chemical reduction of commercial [18F]2-fluoro-2-deoxy-glucose ([18F]FDG), was investigated as a small-molecule marker of BBB permeability, in a pre-clinical model of AD using in vivo PET imaging. Chemical reduction of [18F]FDG to [18F]FDS was obtained with a 100% conversion yield. Dynamic PET acquisitions were performed in the APP/PS1 rat model of AD (TgF344-AD, n=3) compared with age-matched littermates (WT, n=4). The brain uptake of [18F]FDS was determined in selected brain regions, delineated from a coregistered rat brain template. The brain uptake of [18F]FDS in the brain regions of AD rats versus WT rats was compared using a 2-way ANOVA. The uptake of [18F]FDS was significantly higher in the whole brain of AD rats, as compared with WT rats (P<0.001), suggesting increased BBB permeability. Enhanced brain uptake of [18F]FDS in AD rats was significantly different across brain regions (P<0.001). Minimum difference was observed in the amygdala (+89.0±7.6%, P<0.001) and maximum difference was observed in the midbrain (+177.8±29.2%, P<0.001). [18F]FDS, initially proposed as radio-pharmaceutical to estimate renal filtration using PET imaging, can be repurposed for non-invasive and quantitative determination of BBB permeability in vivo. Making the best with the quantitative properties of PET imaging, it was possible to estimate the extent of enhanced BBB permeability in a rat model of AD.


Assuntos
Doença de Alzheimer , Barreira Hematoencefálica , Modelos Animais de Doenças , Tomografia por Emissão de Pósitrons , Animais , Barreira Hematoencefálica/diagnóstico por imagem , Barreira Hematoencefálica/metabolismo , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Ratos , Compostos Radiofarmacêuticos/farmacocinética , Masculino , Ratos Endogâmicos F344 , Ratos Transgênicos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Sorbitol/análogos & derivados , Permeabilidade , Radioisótopos de Flúor , Presenilina-1/genética
2.
J Cereb Blood Flow Metab ; 44(3): 449-458, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38097513

RESUMO

Among opioids, buprenorphine presents a favorable safety profile with a limited risk of respiratory depression. However, fatalities have been reported when buprenorphine is combined to a benzodiazepine. Potentiation of buprenorphine interaction with opioid receptors (ORs) with benzodiazepines, and/or vice versa, is hypothesized to explain this drug-drug interaction (DDI). The mutual DDI between buprenorphine and benzodiazepines was investigated at the neuroreceptor level in nonhuman primates (n = 4 individuals) using brain PET imaging and kinetic modelling. The binding potential (BPND) of benzodiazepine receptor (BzR) was assessed using 11C-flumazenil PET imaging before and after administration of buprenorphine (0.2 mg, i.v.). Moreover, the brain kinetics and receptor binding of buprenorphine were investigated in the same individuals using 11C-buprenorphine PET imaging before and after administration of diazepam (10 mg, i.v.). Outcome parameters were compared using a two-way ANOVA. Buprenorphine did not impact the plasma nor brain kinetics of 11C-flumazenil. 11C-flumazenil BPND was unchanged following buprenorphine exposure, in any brain region (p > 0.05). Similarly, diazepam did not impact the plasma or brain kinetics of 11C-buprenorphine. 11C-buprenorphine volume of distribution (VT) was unchanged following diazepam exposure, in any brain region (p > 0.05). To conclude, our PET imaging findings do not support a neuropharmacokinetic or neuroreceptor-related mechanism of the buprenorphine/benzodiazepine interaction.


Assuntos
Benzodiazepinas , Buprenorfina , Animais , Benzodiazepinas/metabolismo , Flumazenil/farmacocinética , Buprenorfina/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Diazepam/metabolismo , Receptores de GABA-A/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo
3.
Front Neurosci ; 17: 1181786, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37234261

RESUMO

Aim: Buprenorphine mainly acts as an agonist of mu-opioid receptors (mu-OR). High dose buprenorphine does not cause respiratory depression and can be safely administered to elicit typical opioid effects and explore pharmacodynamics. Acute buprenorphine, associated with functional and quantitative neuroimaging, may therefore provide a fully translational pharmacological challenge to explore the variability of response to opioids in vivo. We hypothesized that the CNS effects of acute buprenorphine could be monitored through changes in regional brain glucose metabolism, assessed using 18F-FDG microPET in rats. Materials and methods: First, level of receptor occupancy associated with a single dose of buprenorphine (0.1 mg/kg, s.c) was investigated through blocking experiments using 11C-buprenorphine PET imaging. Behavioral study using the elevated plus-maze test (EPM) was performed to assess the impact of the selected dose on anxiety and also locomotor activity. Then, brain PET imaging using 18F-FDG was performed 30 min after injection of unlabeled buprenorphine (0.1 mg/kg, s.c) vs. saline. Two different 18F-FDG PET acquisition paradigms were compared: (i) 18F-FDG injected i.v. under anesthesia and (ii) 18F-FDG injected i.p. in awake animals to limit the impact of anesthesia. Results: The selected dose of buprenorphine fully blocked the binding of 11C-buprenorphine in brain regions, suggesting complete receptor occupancy. This dose had no significant impact on behavioral tests used, regardless of the anesthetized/awake handling paradigm. In anesthetized rats, injection of unlabeled buprenorphine decreased the brain uptake of 18F-FDG in most brain regions except in the cerebellum which could be used as a normalization region. Buprenorphine treatment significantly decreased the normalized brain uptake of 18F-FDG in the thalamus, striatum and midbrain (p < 0.05), where binding of 11C-buprenorphine was the highest. The awake paradigm did not improve sensitivity and impact of buprenorphine on brain glucose metabolism could not be reliably estimated. Conclusion: Buprenorphine (0.1 mg/kg, s.c) combined with 18F-FDG brain PET in isoflurane anesthetized rats provides a simple pharmacological imaging challenge to investigate the CNS effects of full receptor occupancy by this partial mu-OR agonist. Sensitivity of the method was not improved in awake animals. This strategy may be useful to investigate de desensitization of mu-OR associated with opioid tolerance in vivo.

4.
Pharmaceutics ; 14(8)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36015284

RESUMO

Domperidone and metoclopramide are widely prescribed antiemetic drugs with distinct neurological side effects. The impact of P-glycoprotein (P-gp)-mediated efflux at the blood−brain barrier (BBB) on brain exposure and BBB permeation was compared in vitro and in vivo using positron emission tomography (PET) imaging in rats with the radiolabeled analogs [11C]domperidone and [11C]metoclopramide. In P-gp-overexpressing cells, the IC50 of tariquidar, a potent P-gp inhibitor, was drastically different using [11C]domperidone (221 nM [198−248 nM]) or [11C]metoclopramide (4 nM [2−8 nM]) as the substrate. Complete P-gp inhibition led to a 1.8-fold higher increase in the cellular uptake of [11C]domperidone compared with [11C]metoclopramide (p < 0.0001). Brain PET imaging revealed that the baseline brain exposure (AUCbrain) of [11C]metoclopramide was 2.4-fold higher compared with [11C]domperidone (p < 0.001), consistent with a 1.8-fold higher BBB penetration (AUCbrain/AUCplasma). The maximal increase in the brain exposure (2.9-fold, p < 0.0001) and BBB penetration (2.9-fold, p < 0.0001) of [11C]metoclopramide was achieved using 8 mg/kg of tariquidar. In comparison, neither 8 nor 15 mg/kg of tariquidar increased the brain exposure of [11C]domperidone (p > 0.05). Domperidone is an avid P-gp substrate that was in vitro compared with metoclopramide. Domperidone benefits from a lower brain exposure and a limited risk for P-gp-mediated drug−drug interaction involving P-gp inhibition at the BBB.

5.
Psychopharmacology (Berl) ; 237(12): 3591-3602, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32820390

RESUMO

RATIONALE: Opioids remain the drugs of choice for treating moderate to severe pain, although adverse effects often limit use. Drugs acting concomitantly as agonists at µ opioid receptors and antagonists at δ opioid receptors produce antinociceptive effects with a reduced profile of adverse effects; one such drug, benzylideneoxymorphone (BOM), might further limit adverse effects because it appears to have lower pharmacological efficacy than other µ opioid receptor agonists. OBJECTIVES: The current study compared the acute behavioral effects of BOM with the effects of other µ opioid receptor agonists. METHODS: Discriminative stimulus and rate-decreasing effects were studied in 1 group of 7 rats discriminating 3.2 mg/kg morphine while responding under a fixed-ratio 10 schedule of food presentation. Antinociceptive effects were determined in a second group of 8 rats using a warm water tail withdrawal procedure. Reinforcing effects were evaluated in a third group of 12 rats with a history of remifentanil self-administration. RESULTS: BOM produced morphine-lever responding and both discriminative stimulus and rate-decreasing effects were antagonized by naltrexone. BOM did not markedly increase tail-withdrawal latencies from water maintained at 50 °C and did not substantially attenuate the antinociceptive effects of morphine. BOM was not self-administered and did not change remifentanil self-administration. CONCLUSIONS: Some effects of BOM (e.g., discriminative stimulus effects) appear to be mediated by µ opioid receptors; however, BOM is not self-administered by rats, suggesting that it might have limited abuse liability and a reduced profile of adverse effects compared with currently prescribed opioids.


Assuntos
Analgésicos Opioides/farmacologia , Oximorfona/análogos & derivados , Dor/tratamento farmacológico , Receptores Opioides delta/antagonistas & inibidores , Receptores Opioides mu/agonistas , Animais , Relação Dose-Resposta a Droga , Masculino , Morfina/farmacologia , Naltrexona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Oximorfona/farmacologia , Medição da Dor/efeitos dos fármacos , Ratos , Reforço Psicológico , Autoadministração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA