Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol Chem ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136622

RESUMO

Barium (Ba) dissolution and mobilization in groundwater are predominantly controlled by sulfate because of the low solubility of barium sulfate (BaSO4) minerals. Naturally present at low concentrations in groundwater, elevated concentrations of Ba can occur as a result of anthropogenic activities, including use of barite in drill operations, and geogenic sources such as leaching from geological formations. No toxicity data exist for Ba with groundwater organisms (stygofauna) to assess the risk of elevated Ba concentrations. The present study measured Ba toxicity to two stygobiont Cyclopoida species: one collected from Wellington and the other from Somersby, New South Wales, Australia. Toxicity was measured as cyclopoid survival over 2, 4, 7, 14, 21, and 28 days in waters of varying sulfate concentration (<1-100 mg SO4/L). When sulfate was present, dissolved Ba concentrations decreased rapidly in toxicity test solutions forming a BaSO4 precipitate until dissolved sulfate was depleted. Barium in excess of sulfate remained in the dissolved form. The toxicity of Ba to cyclopoids was clearly attributed to dissolved Ba. Precipitated Ba was not toxic to the Wellington cyclopoid species. Toxicity values for dissolved Ba for the Wellington and Somersby cyclopoid species included a (21-day) no-effect concentration of 3.3 mg/L and an effective concentration to cause 5% mortality of 4.8 mg/L (at 21 days). Elevated dissolved Ba concentrations due to anthropogenic and/or biogeochemical processes may pose a risk to groundwater organisms. Further toxicity testing with other stygobiont species is recommended to increase the data available to derive a guideline value for Ba that can be used in contaminant risk assessments for groundwaters. Environ Toxicol Chem 2024;00:1-14. © 2024 The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

2.
Environ Pollut ; 338: 122708, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37806427

RESUMO

For the purpose of sediment quality assessment, the prediction of toxicity risk-levels for aquatic organisms based on simple environmental measurements is desirable. One commonly used approach is the comparison of total contaminant concentrations with corresponding water and sediment quality guideline values, serving as a Line of Evidence (LoE) based on chemistry-toxicity effects relationships. However, the accuracy of toxicity predictions can be improved by considering the factors that modify contaminant bioavailability. In this study we used paired chemistry-ecotoxicity data sets for sediments to evaluate the improvement in toxicity risk predictions using bioavailability-modified guidelines. The sediments were predominantly contaminated with metals, and measurements of sediment particle size, total organic carbon (TOC) and acid volatile sulfide (AVS) were used to modify hazard quotients (HQ). To further assess the predictive efficacy of the bioavailability-modified guideline models, sediments with differing contamination levels were tested for toxicity to a benthic amphipod's reproduction. To account for differences between laboratory exposure and field exposure scenarios, where the latter creates greater dilution, both static-renewal and flow-through test procedures were employed, and flow-through resulted in lower dissolved metal concentrations in the overlying waters. We also investigated how lower AVS concentration by oxidation modified the toxicity. This study reaffirmed that consideration of factors that influence contaminant bioavailability improves toxicity risk predictions, however the improvements may be modest. The sediment particle size data had the greatest influence on the modified HQ, indicating that higher percentage of fine particle size (<63 µm) contributed most to a lower predicted toxicity. The comparison of the static-renewal and flow-through test results continue to raise important questions about the relevance of static or static-renewal toxicity test results for risk assessment decisions, as both these test designs may cause unrealistically high contributions of dissolved metals in overlying waters to toxicity. Overall, this study underscores the value of incorporating outcomes from simple and routine sediment analysis (e.g., particle size, TOC, and consideration of AVS) to enhance the predictive efficacy of toxicity risk assessments in the context of sediment quality risk assessment.


Assuntos
Anfípodes , Poluentes Químicos da Água , Animais , Sedimentos Geológicos/análise , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Metais/toxicidade , Metais/análise , Água/análise , Sulfetos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA