Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Crit Care ; 28(1): 263, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103945

RESUMO

BACKGROUND: Automated analysis of lung computed tomography (CT) scans may help characterize subphenotypes of acute respiratory illness. We integrated lung CT features measured via deep learning with clinical and laboratory data in spontaneously breathing subjects to enhance the identification of COVID-19 subphenotypes. METHODS: This is a multicenter observational cohort study in spontaneously breathing patients with COVID-19 respiratory failure exposed to early lung CT within 7 days of admission. We explored lung CT images using deep learning approaches to quantitative and qualitative analyses; latent class analysis (LCA) by using clinical, laboratory and lung CT variables; regional differences between subphenotypes following 3D spatial trajectories. RESULTS: Complete datasets were available in 559 patients. LCA identified two subphenotypes (subphenotype 1 and 2). As compared with subphenotype 2 (n = 403), subphenotype 1 patients (n = 156) were older, had higher inflammatory biomarkers, and were more hypoxemic. Lungs in subphenotype 1 had a higher density gravitational gradient with a greater proportion of consolidated lungs as compared with subphenotype 2. In contrast, subphenotype 2 had a higher density submantellar-hilar gradient with a greater proportion of ground glass opacities as compared with subphenotype 1. Subphenotype 1 showed higher prevalence of comorbidities associated with endothelial dysfunction and higher 90-day mortality than subphenotype 2, even after adjustment for clinically meaningful variables. CONCLUSIONS: Integrating lung-CT data in a LCA allowed us to identify two subphenotypes of COVID-19, with different clinical trajectories. These exploratory findings suggest a role of automated imaging characterization guided by machine learning in subphenotyping patients with respiratory failure. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT04395482. Registration date: 19/05/2020.


Assuntos
COVID-19 , Pulmão , Fenótipo , Insuficiência Respiratória , Tomografia Computadorizada por Raios X , Humanos , COVID-19/diagnóstico por imagem , COVID-19/fisiopatologia , Tomografia Computadorizada por Raios X/métodos , Feminino , Masculino , Pessoa de Meia-Idade , Pulmão/diagnóstico por imagem , Pulmão/fisiopatologia , Idoso , Insuficiência Respiratória/diagnóstico por imagem , Insuficiência Respiratória/etiologia , Insuficiência Respiratória/fisiopatologia , Estudos de Coortes , Adulto
2.
Ann Intensive Care ; 14(1): 106, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963617

RESUMO

BACKGROUND: The recruitment-to-inflation ratio (R/I) has been recently proposed to bedside assess response to PEEP. The impact of PEEP on ventilator-induced lung injury depends on the extent of dynamic strain reduction. We hypothesized that R/I may reflect the potential for lung recruitment (i.e. recruitability) and, consequently, estimate the impact of PEEP on dynamic lung strain, both assessed through computed tomography scan. METHODS: Fourteen lung-damaged pigs (lipopolysaccharide infusion) underwent ventilation at low (5 cmH2O) and high PEEP (i.e., PEEP generating a plateau pressure of 28-30 cmH2O). R/I was measured through a one-breath derecruitment maneuver from high to low PEEP. PEEP-induced changes in dynamic lung strain, difference in nonaerated lung tissue weight (tissue recruitment) and amount of gas entering previously nonaerated lung units (gas recruitment) were assessed through computed tomography scan. Tissue and gas recruitment were normalized to the weight and gas volume of previously ventilated lung areas at low PEEP (normalized-tissue recruitment and normalized-gas recruitment, respectively). RESULTS: Between high (median [interquartile range] 20 cmH2O [18-21]) and low PEEP, median R/I was 1.08 [0.88-1.82], indicating high lung recruitability. Compared to low PEEP, tissue and gas recruitment at high PEEP were 246 g [182-288] and 385 ml [318-668], respectively. R/I was linearly related to normalized-gas recruitment (r = 0.90; [95% CI 0.71 to 0.97) and normalized-tissue recruitment (r = 0.69; [95% CI 0.25 to 0.89]). Dynamic lung strain was 0.37 [0.29-0.44] at high PEEP and 0.59 [0.46-0.80] at low PEEP (p < 0.001). R/I was significantly related to PEEP-induced reduction in dynamic (r = - 0.93; [95% CI - 0.78 to - 0.98]) and global lung strain (r = - 0.57; [95% CI - 0.05 to - 0.84]). No correlation was found between R/I and and PEEP-induced changes in static lung strain (r = 0.34; [95% CI - 0.23 to 0.74]). CONCLUSIONS: In a highly recruitable ARDS model, R/I reflects the potential for lung recruitment and well estimates the extent of PEEP-induced reduction in dynamic lung strain.

3.
Eur J Anaesthesiol ; 41(9): 695-704, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38988248

RESUMO

BACKGROUND: Cardiac risk evaluation prior to noncardiac surgery is fundamental to tailor peri-operative management to patient's estimated risk. Data on the degree of adherence to guidelines in patients at cardiovascular risk in Europe and factors influencing adherence are underexplored. OBJECTIVES: The aim of this analysis was to describe the degree of adherence to [2014 European Society of Cardiology (ESC)/European Society of Anaesthesiology (ESA) guidelines] recommendations on rest echocardiography [transthoracic echocardiography (TTE)] and to stress imaging prior to noncardiac surgery in a large European sample and to assess factors potentially affecting adherence. DESIGN: Secondary analysis of a multicentre, international, prospective cohort study (MET-REPAIR). SETTING: Twenty-five European centres of all levels of care that enrolled patients between 2017 and 2020. PATIENTS: With elevated cardiovascular risk undergoing in-hospital elective, noncardiac surgery. MAIN OUTCOME MEASURES: (Non)adherence to each pre-operative TTE and stress imaging recommendations classified as guideline-adherent, overuse and underuse. We performed descriptive analysis. To explore the impact of patients' sex, age, geographical region, and hospital teaching status, we conducted multivariate multinominal regression analysis. RESULTS: Out of 15 983 patients, 15 529 were analysed (61% men, mean age 72 ±â€Š8 years). Overuse (conduction in spite of class III) and underuse (nonconduction in spite of class I recommendation) for pre-operative TTE amounted to 16.6% (2542/15 344) and 6.6% (1015/15 344), respectively. Stress imaging overuse and underuse amounted to 1.7% (241/14 202) and 0.4% (52/14 202) respectively. Male sex, some age categories and some geographical regions were significantly associated with TTE overuse. Male sex and some regions were also associated with TTE underuse. Age and regions were associated with overuse of stress imaging. Male sex, age, and some regions were associated with stress imaging underuse. CONCLUSION: Adherence to pre-operative stress imaging recommendation was high. In contrast, adherence to TTE recommendations was moderate. Both patients' and geographical factors affected adherence to joint ESC/ESA guidelines. TRIAL REGISTRATION: NCT03016936.


Assuntos
Fidelidade a Diretrizes , Cuidados Pré-Operatórios , Humanos , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Estudos Prospectivos , Cuidados Pré-Operatórios/métodos , Cuidados Pré-Operatórios/normas , Estudos de Coortes , Europa (Continente) , Ecocardiografia sob Estresse , Ecocardiografia/normas , Guias de Prática Clínica como Assunto , Medição de Risco/métodos , Doenças Cardiovasculares/diagnóstico , Idoso de 80 Anos ou mais
4.
Anesthesiology ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38768389

RESUMO

BACKGROUND: Postoperative pulmonary complications (PPCs) can increase hospital length of stay, postoperative morbidity and mortality. Despite many factors can increase the risk of PPCs, it is not known whether intraoperative ventilation/perfusion (V/Q) mismatch can be associated with an increased risk of PPCs after major non-cardiac surgery. METHODS: We enrolled patients undergoing general anesthesia for non-cardiac surgery and evaluated intraoperative V/Q distribution using the Automatic Lung Parameter Estimator technique. The assessment was done after anesthesia induction (T1), after 1 hour from surgery start (T2) and at the end of surgery (T3). We collected demographic and procedural information and measured intraoperative ventilatory and hemodynamic parameters at each time-point. Patients were followed up for 7 days after surgery and assessed daily for PPCs occurrence. RESULTS: We enrolled 101 patients with a median age of 71 [62-77] years, a BMI of 25 [22.4-27.9] kg/m 2 and a preoperative ARISCAT score of 41 [34-47]. Of them, 29 (29%) developed PPCs, mainly acute respiratory failure (23%) and pleural effusion (11%). Patients with and without PPCs did not differ in levels of shunt at T1 (PPCs:22.4[10.4-35.9] % vs No PPCs:19.3[9.4-24.1] %, p=0.18) or during the protocol, while significantly different levels of high V/Q were found during surgery (PPCs:13[11-15] mmHg vs No PPCs:10[8-13.5] mmHg, p=0.007) and before extubation (PPCs:13[11-14]mmHg vs No PPCs:10[8-12] mmHg, p=0.006). After adjusting for age, ARISCAT, BMI, smoking, fluid balance, anesthesia type, laparoscopic procedure and surgery duration, high V/Q before extubation was independently associated with the development of PPCs (OR 1.147, CI 95% [1.021-1.289], p=0.02). The sensitivity analysis showed an E-value of 1.35 (CI=1.11). CONCLUSIONS: In patients with intermediate/high risk of PPCs undergoing major non-cardiac surgery, intraoperative V/Q mismatch is associated with the development of PPCs. Increased high V/Q before extubation is independently associated with the occurrence of PPCs in the first 7 days after surgery.

5.
J Clin Monit Comput ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771490

RESUMO

PURPOSE: Growing evidence shows the complex interaction between lung and kidney in critically ill patients. The renal resistive index (RRI) is a bedside measurement of the resistance of the renal blood flow and it is correlated with kidney injury. The positive end-expiratory pressure (PEEP) level could affect the resistance of renal blood flow, so we assumed that RRI could help to monitoring the changes in renal hemodynamics at different PEEP levels. Our hypothesis was that the RRI at ICU admission could predict the risk of acute kidney injury in mechanical ventilated critically ill patients. METHODS: We performed a prospective study including 92 patients requiring mechanical ventilation for ≥ 48 h. A RRI ≥ 0.70, was deemed as pathological. RRI was measured within 24 h from ICU admission while applying 5,10 and 15 cmH2O of PEEP in random order (PEEP trial). RESULTS: Overall, RRI increased from 0.62 ± 0.09 at PEEP 5 to 0.66 ± 0.09 at PEEP 15 (p < 0.001). The mean RRI value during the PEEP trial was able to predict the occurrence of AKI with AUROC = 0.834 [95%CI 0.742-0.927]. Patients exhibiting a RRI ≥ 0.70 were 17/92(18%) at PEEP 5, 28/92(30%) at PEEP 10, 38/92(41%) at PEEP 15, respectively. Thirty-eight patients (41%) exhibited RRI ≥ 0.70 at least once during the PEEP trial. In these patients, AKI occurred in 55% of the cases, versus 13% remaining patients, p < 0.001. CONCLUSIONS: RRI seems able to predict the risk of AKI in mechanical ventilated patients; further, RRI values are influenced by the PEEP level applied. TRIAL REGISTRATION: Clinical gov NCT03969914 Registered 31 May 2019.

6.
J Clin Med ; 13(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731069

RESUMO

Advanced respiratory monitoring encompasses a diverse range of mini- or noninvasive tools used to evaluate various aspects of respiratory function in patients experiencing acute respiratory failure, including those requiring extracorporeal membrane oxygenation (ECMO) support. Among these techniques, key modalities include esophageal pressure measurement (including derived pressures), lung and respiratory muscle ultrasounds, electrical impedance tomography, the monitoring of diaphragm electrical activity, and assessment of flow index. These tools play a critical role in assessing essential parameters such as lung recruitment and overdistention, lung aeration and morphology, ventilation/perfusion distribution, inspiratory effort, respiratory drive, respiratory muscle contraction, and patient-ventilator synchrony. In contrast to conventional methods, advanced respiratory monitoring offers a deeper understanding of pathological changes in lung aeration caused by underlying diseases. Moreover, it allows for meticulous tracking of responses to therapeutic interventions, aiding in the development of personalized respiratory support strategies aimed at preserving lung function and respiratory muscle integrity. The integration of advanced respiratory monitoring represents a significant advancement in the clinical management of acute respiratory failure. It serves as a cornerstone in scenarios where treatment strategies rely on tailored approaches, empowering clinicians to make informed decisions about intervention selection and adjustment. By enabling real-time assessment and modification of respiratory support, advanced monitoring not only optimizes care for patients with acute respiratory distress syndrome but also contributes to improved outcomes and enhanced patient safety.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38656318

RESUMO

Our study investigates the post-mortem findings of the diaphragm's muscular structural changes in mechanically ventilated COVID-19 patients. Diaphragm samples of the right side from 42 COVID-19 critically ill patients were analyzed and correlated with the type and length of mechanical ventilation (MV), ventilatory parameters, prone positioning, and use of sedative drugs. The mean number of fibers was 550±626. The cross-sectional area was 4120±3280 µm2, while the muscular fraction was 0.607±0.126. The overall population was clustered into two distinct populations (clusters 1 and 2). Cluster 1 showed a lower percentage of slow myosin fiber and higher fast fiber content than cluster 2, 68% versus 82%, p<0.00001, and 29.8% versus 18.8%, p=0.00045 respectively. The median duration of MV was 180 (41-346) hours. In cluster 1, a relationship between assisted ventilation and fast myosin fiber percentage (R2=-0.355, p=0.014) was found. In cluster 2, fast fiber content increased with increasing the length of the controlled MV (R2=0.446, p=0.006). A high grade of fibrosis was reported. Cluster 1 was characterized by fibers' atrophy and cluster 2 by hypertrophy, supposing different effects of ventilation on the diaphragm but without excluding a possible direct viral effect on diaphragmatic fibers.

9.
J Clin Monit Comput ; 38(4): 847-858, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38512359

RESUMO

Transpulmonary pressure (PL) calculation requires esophageal pressure (PES) as a surrogate of pleural pressure (Ppl), but its calibration is a cumbersome technique. Central venous pressure (CVP) swings may reflect tidal variations in Ppl and could be used instead of PES, but the interpretation of CVP waveforms could be difficult due to superposition of heartbeat-induced pressure changes. Thus, we developed a digital filter able to remove the cardiac noise to obtain a filtered CVP (f-CVP). The aim of the study was to evaluate the accuracy of CVP and filtered CVP swings (ΔCVP and Δf-CVP, respectively) in estimating esophageal respiratory swings (ΔPES) and compare PL calculated with CVP, f-CVP and PES; then we tested the diagnostic accuracy of the f-CVP method to identify unsafe high PL levels, defined as PL>10 cmH2O. Twenty patients with acute respiratory failure (defined as PaO2/FiO2 ratio below 200 mmHg) treated with invasive mechanical ventilation and monitored with an esophageal balloon and central venous catheter were enrolled prospectively. For each patient a recording session at baseline was performed, repeated if a modification in ventilatory settings occurred. PES, CVP and airway pressure during an end-inspiratory and -expiratory pause were simultaneously recorded; CVP, f-CVP and PES waveforms were analyzed off-line and used to calculate transpulmonary pressure (PLCVP, PLf-CVP, PLPES, respectively). Δf-CVP correlated better than ΔCVP with ΔPES (r = 0.8, p = 0.001 vs. r = 0.08, p = 0.73), with a lower bias in Bland Altman analysis in favor of PLf-CVP (mean bias - 0.16, Limits of Agreement (LoA) -1.31, 0.98 cmH2O vs. mean bias - 0.79, LoA - 3.14, 1.55 cmH2O). Both PLf-CVP and PLCVP correlated well with PLPES (r = 0.98, p < 0.001 vs. r = 0.94, p < 0.001), again with a lower bias in Bland Altman analysis in favor of PLf-CVP (0.15, LoA - 0.95, 1.26 cmH2O vs. 0.80, LoA - 1.51, 3.12, cmH2O). PLf-CVP discriminated high PL value with an area under the receiver operating characteristic curve 0.99 (standard deviation, SD, 0.02) (AUC difference = 0.01 [-0.024; 0.05], p = 0.48). In mechanically ventilated patients with acute respiratory failure, the digital filtered CVP estimated ΔPES and PL obtained from digital filtered CVP represented a reliable value of standard PL measured with the esophageal method and could identify patients with non-protective ventilation settings.


Assuntos
Pressão Venosa Central , Esôfago , Respiração Artificial , Humanos , Respiração Artificial/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Estudos Prospectivos , Monitorização Fisiológica/métodos , Monitorização Fisiológica/instrumentação , Pressão , Insuficiência Respiratória/terapia , Insuficiência Respiratória/fisiopatologia , Reprodutibilidade dos Testes , Idoso de 80 Anos ou mais , Pleura/fisiopatologia , Algoritmos , Volume de Ventilação Pulmonar
10.
Br J Anaesth ; 132(4): 675-684, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38336516

RESUMO

BACKGROUND: In 2022, the European Society of Cardiology updated guidelines for preoperative evaluation. The aims of this study were to quantify: (1) the impact of the updated recommendations on the yield of pathological findings compared with the previous guidelines published in 2014; (2) the impact of preoperative B-type natriuretic peptide (NT-proBNP) use for risk estimation on the yield of pathological findings; and (3) the association between 2022 guideline adherence and outcomes. METHODS: This was a secondary analysis of MET-REPAIR, an international, prospective observational cohort study (NCT03016936). Primary endpoints were reduced ejection fraction (EF<40%), stress-induced ischaemia, and major adverse cardiovascular events (MACE). The explanatory variables were class of recommendations for transthoracic echocardiography (TTE), stress imaging, and guideline adherence. We conducted second-order Monte Carlo simulations and multivariable regression. RESULTS: In total, 15,529 patients (39% female, median age 72 [inter-quartile range: 67-78] yr) were included. The 2022 update changed the recommendation for preoperative TTE in 39.7% patients, and for preoperative stress imaging in 12.9% patients. The update resulted in missing 1 EF <40% every 3 fewer conducted TTE, and in 4 additional stress imaging per 1 additionally detected ischaemia events. For cardiac stress testing, four more investigations were performed for every 1 additionally detected ischaemia episodes. Use of NT-proBNP did not improve the yield of pathological findings. Multivariable regression analysis failed to find an association between adherence to the updated guidelines and MACE. CONCLUSIONS: The 2022 update for preoperative cardiac testing resulted in a relevant increase in tests receiving a stronger recommendation. The updated recommendations for TTE did not improve the yield of pathological cardiac testing.


Assuntos
Cardiologia , Humanos , Feminino , Idoso , Masculino , Estudos Prospectivos , Ecocardiografia , Peptídeo Natriurético Encefálico , Fragmentos de Peptídeos , Isquemia , Biomarcadores
12.
Ultrasound J ; 16(1): 7, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38345653

RESUMO

In critically ill patients with acute respiratory failure, thoracic images are essential for evaluating the nature, extent and progression of the disease, and for clinical management decisions. For this purpose, computed tomography (CT) is the gold standard. However, transporting patients to the radiology suite and exposure to ionized radiation limit its use. Furthermore, a CT scan is a static diagnostic exam for the thorax, not allowing, for example, appreciation of "lung sliding". Its use is also unsuitable when it is necessary to adapt or decide to modify mechanical ventilation parameters at the bedside in real-time. Therefore, chest X-ray and lung ultrasound are today's contenders for shared second place on the podium to acquire a thoracic image, with their specific strengths and limitations. Finally, electrical impedance tomography (EIT) could soon have a role, however, its assessment is outside the scope of this review. Thus, we aim to carry out the following points: (1) analyze the advancement in knowledge of lung ultrasound use and the related main protocols adopted in intensive care units (ICUs) over the latest 30 years, reporting the principal publications along the way, (2) discuss how and when lung ultrasound should be used in a modern ICU and (3) illustrate the possible future development of LUS.

13.
J Clin Med ; 13(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38256451

RESUMO

Prone positioning (PP) represents a therapeutic intervention with the proven capacity of ameliorating gas exchanges and ventilatory mechanics indicated in acute respiratory distress syndrome (ARDS). When PP is selectively applied to moderate-severe cases of ARDS, it sensitively affects clinical outcomes, including mortality. After the COVID-19 outbreak, clinical application of PP peaked worldwide and was applied in 60% of treated cases, according to large reports. Research on this topic has revealed many physiological underpinnings of PP, focusing on regional ventilation redistribution and the reduction of parenchymal stress and strain. However, there is a lack of evidence on biomarkers behavior in different phases and phenotypes of ARDS. Patients response to PP are, to date, decided on PaO2/FiO2 ratio improvement, whereas scarce data exist on biomarker tracking during PP. The purpose of this review is to explore current evidence on the clinical relevance of biomarkers in the setting of moderate-severe ARDS of different etiologies (i.e., COVID and non-COVID-related ARDS). Moreover, this review focuses on how PP may modulate biomarkers and which biomarkers may have a role in outcome prediction in ARDS patients.

14.
Inflamm Res ; 73(1): 117-130, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38117300

RESUMO

BACKGROUND: Endothelial dysfunction plays a central role in the pathophysiology of COVID-19 and is closely linked to the severity and mortality of the disease. The inflammatory response to SARS-CoV-2 infection can alter the capacity of the endothelium to regulate vascular tone, immune responses, and the balance between anti-thrombotic and pro-thrombotic properties. However, the specific endothelial pathways altered during COVID-19 still need to be fully understood. OBJECTIVE: In this study, we sought to identify molecular changes in endothelial cells induced by circulating factors characteristic of COVID-19. METHODS AND RESULTS: To this aim, we cultured endothelial cells with sera from patients with COVID-19 or non-COVID-19 pneumonia. Through transcriptomic analysis, we were able to identify a distinctive endothelial phenotype that is induced by sera from COVID-19 patients. We confirmed and expanded this observation in vitro by showing that COVID-19 serum alters functional properties of endothelial cells leading to increased apoptosis, loss of barrier integrity, and hypercoagulability. Furthermore, we demonstrated that these endothelial dysfunctions are mediated by protease-activated receptor 2 (PAR-2), as predicted by transcriptome network analysis validated by in vitro functional assays. CONCLUSION: Our findings provide the rationale for further studies to evaluate whether targeting PAR-2 may be a clinically effective strategy to counteract endothelial dysfunction in COVID-19.


Assuntos
COVID-19 , Trombose , Humanos , Receptor PAR-2 , SARS-CoV-2 , Células Endoteliais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA