Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Data Brief ; 55: 110752, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39156670

RESUMO

The dataset consists of FTIR spectra of ultra-filtered spent sulphite liquor (UF-SSL) from softwood pulping obtained from one paper mill biorefinery plant with the purpose of real-time quantification of the sugar content of UF-SSL. Data collection was performed using a submerged mid-IR probe placed in a continuously stirred tank reactor and reference sugar measurements were performed using HPLC. Spectra were obtained of raw and spiked UF-SSL. As "low complexity" case 25% UF-SSL from one batch was analysed for its 3 most abundant sugars (mannose, xylose, glucose) and as "high complexity" case 25/50/75% UF-SSL from 2 batches was analysed for its 5 most abundant sugars (the latter + galactose, arabinose). In both cases, independent single sugar spikes and simultaneous multiple sugar spikes were performed. Real time in-line data was generated by stepwise and gradual changes in sugar composition over time with a run time of >200 h.

2.
N Biotechnol ; 83: 74-81, 2024 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-39032630

RESUMO

Targeted cancer therapy is a promising alternative to the currently established cancer treatments, aiming to selectively kill cancer cells while sparing healthy tissues. Hereby, molecular targeting agents, such as monoclonal antibodies, are used to bind to cancer cell surface markers specifically. Although these agents have shown great clinical success, limitations still remain such as low tumor penetration and off-target effects. To overcome this limitation, novel fusion proteins comprised of the two proteins ADAPT6 and Horseradish Peroxidase (HRP) were engineered. Cancer cell targeting is hereby enabled by the small scaffold protein ADAPT6, engineered to specifically bind to human epidermal growth factor receptor 2 (HER2), a cell surface marker overexpressed in various cancer types, while the enzyme HRP oxidizes the nontoxic prodrug indole-3-acetic acid (IAA) which leads to the formation of free radicals and thereby to cytotoxic effects on cancer cells. The high affinity to HER2, as well as the enzymatic activity of HRP, were still present for the ADAPT6-HRP fusion proteins. Further, in vitro cytotoxicity assay using HER2-positive SKOV-3 cells revealed a clear advantage of the fusion proteins over free HRP by association of the fusion proteins directly to the cancer cells and therefore sustained cell killing. This novel strategy of combining ADAPT6 and HRP represents a promising approach and a viable alternative to antibody conjugation for targeted cancer therapy.


Assuntos
Peroxidase do Rábano Silvestre , Receptor ErbB-2 , Proteínas Recombinantes de Fusão , Humanos , Peroxidase do Rábano Silvestre/metabolismo , Peroxidase do Rábano Silvestre/química , Receptor ErbB-2/metabolismo , Receptor ErbB-2/antagonistas & inibidores , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/metabolismo
3.
J Environ Manage ; 366: 121796, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39008925

RESUMO

Common wastewater treatment strategies in the food industry do not include efficient remediation strategies for nitrogen, phosphorous and organic carbon. Incorporating microalgae in water treatment plants is rising in popularity because of their high nutrient and trace element uptake driven by light. In this study, four different side streams from an Austrian potato processing company have been screened for their applicability of microalgal cultivation. The side streams were assessed for Chlorella vulgaris growth and their requirement of any additional pretreatment or media supplementation. One side stream specifically, called blanching water II, a stream generated by boiling the potatoes for ease of peeling, turned out very useful to cultivate Chlorella vulgaris and concomitantly remedy the wastewater. Compared to a state-of-the-art cultivation in BG11, cultivating Chlorella vulgaris in blanching water II led to a 45 % increase in specific growth rate of 1.29 day-1 and a 48% increase in biomass productivity to 294.6 mg/L/day, while all nitrogen and phosphate present in the side stream were metabolized. Overall, the results demonstrate that the water remediation process for blanching water II shows vast potential in regard to water purification and waste to value approaches.


Assuntos
Chlorella vulgaris , Solanum tuberosum , Chlorella vulgaris/metabolismo , Chlorella vulgaris/crescimento & desenvolvimento , Solanum tuberosum/crescimento & desenvolvimento , Nitrogênio/metabolismo , Purificação da Água/métodos , Microalgas/metabolismo , Microalgas/crescimento & desenvolvimento , Águas Residuárias , Biomassa , Fósforo/metabolismo
4.
Extremophiles ; 28(3): 36, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39060419

RESUMO

The heterotrophic cultivation of extremophilic archaea still heavily relies on complex media. However, complex media are associated with unknown composition, high batch-to-batch variability, potential inhibiting and interfering components, as well as regulatory challenges, hampering advancements of extremophilic archaea in genetic engineering and bioprocessing. For Metallosphaera sedula, a widely studied organism for biomining and bioremediation and a potential production host for archaeal ether lipids, efforts to find defined cultivation conditions have still been unsuccessful. This study describes the development of a novel chemically defined growth medium for M. sedula. Initial experiments with commonly used complex casein-derived media sources deciphered Casamino Acids as the most suitable foundation for further development. The imitation of the amino acid composition of Casamino Acids in basal Brock medium delivered the first chemically defined medium. We could further simplify the medium to 5 amino acids based on the respective specific substrate uptake rates. This first defined cultivation medium for M. sedula allows advanced genetic engineering and more controlled bioprocess development approaches for this highly interesting archaeon.


Assuntos
Meios de Cultura , Sulfolobaceae/metabolismo , Sulfolobaceae/crescimento & desenvolvimento , Sulfolobaceae/genética , Processos Heterotróficos
5.
Bioresour Technol ; 406: 130967, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38880268

RESUMO

In this study, a bioprocessing strategy was designed to valorize ultra-filtered spent sulfite liquor (UF-SSL) without prior detoxification steps as well as using it purely as a carbon source supplement to defined or complex media. Hence, a minimal medium for the bioconversion of UF-SSL with Corynebacterium glutamicum was developed and process robustness and reproducibility were validated. Process quantifiability was ensured by development of a biomass measurement technique for matrices with high water-insoluble solids and verified using elemental balancing. Mechanistic modeling based on Monod equations was used to identify batch kinetics. In a final step, scale-up of the developed process was performed to showcase process maturity towards commercialisation.


Assuntos
Biomassa , Corynebacterium glutamicum , Sulfitos , Corynebacterium glutamicum/metabolismo , Biotecnologia/métodos , Cinética , Reprodutibilidade dos Testes , Meios de Cultura
6.
Pharmaceutics ; 16(6)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38931818

RESUMO

Archaeosomes were manufactured from natural archaeal lipids by a microfluidics-assisted single-step production method utilizing a mixture of di- and tetraether lipids extracted from Sulfolobus acidocaldarius. The primary aim of this study was to investigate the exceptional stability of archaeosomes as potential carriers for oral drug delivery, with a focus on powdered formulations. The archaeosomes were negatively charged with a size of approximately 100 nm and a low polydispersity index. To assess their suitability for oral delivery, the archaeosomes were loaded with two model drugs: calcein, a fluorescent compound, and insulin, a peptide hormone. The archaeosomes demonstrated high stability in simulated intestinal fluids, with only 5% of the encapsulated compounds being released after 24 h, regardless of the presence of degrading enzymes or extremely acidic pH values such as those found in the stomach. In a co-culture cell model system mimicking the intestinal barrier, the archaeosomes showed strong adhesion to the cell membranes, facilitating a slow release of contents. The archaeosomes were loaded with insulin in a single-step procedure achieving an encapsulation efficiency of approximately 35%. These particles have been exposed to extreme manufacturing temperatures during freeze-drying and spray-drying processes, demonstrating remarkable resilience under these harsh conditions. The fabrication of stable dry powder formulations of archaeosomes represents a promising advancement toward the development of solid dosage forms for oral delivery of biological drugs.

7.
Cytotherapy ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38944794

RESUMO

Natural killer (NK) cells make only a small fraction of immune cells in the human body, however, play a pivotal role in the fight against cancer by the immune system. They are capable of eliminating abnormal cells via several direct or indirect cytotoxicity pathways in a self-regulating manner, which makes them a favorable choice as a cellular therapy against cancer. Additionally, allogeneic NK cells, unlike other lymphocytes, do not or only minimally cause graft-versus-host diseases opening the door for an off-the-shelf therapy. However, to date, the production of NK cells faces several difficulties, especially because the critical process parameters (CPPs) influencing the critical quality attributes (CQAs) are difficult to identify or correlate. There are numerous different cultivation platforms available, all with own characteristics, benefits and disadvantages that add further difficulty to define CPPs and relate them to CQAs. Our goal in this contribution was to summarize the current knowledge about NK cell expansion CPPs and CQAs, therefore we analyzed the available literature of both dynamic and static culture format experiments in a systematic manner. We present a list of the identified CQAs and CPPs and discuss the role of each CPP in the regulation of the CQAs. Furthermore, we could identify potential relationships between certain CPPs and CQAs. The findings based on this systematic literature research can be the foundation for meaningful experiments leading to better process understanding and eventually control.

8.
Microb Cell Fact ; 23(1): 177, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879507

RESUMO

BACKGROUND: Heme-incorporating peroxygenases are responsible for electron transport in a multitude of organisms. Yet their application in biocatalysis is hindered due to their challenging recombinant production. Previous studies suggest Komagataella phaffi to be a suitable production host for heme-containing enzymes. In addition, co-expression of helper proteins has been shown to aid protein folding in yeast. In order to facilitate recombinant protein expression for an unspecific peroxygenase (AnoUPO), we aimed to apply a bi-directionalized expression strategy with Komagataella phaffii. RESULTS: In initial screenings, co-expression of protein disulfide isomerase was found to aid the correct folding of the expressed unspecific peroxygenase in K. phaffi. A multitude of different bi-directionalized promoter combinations was screened. The clone with the most promising promoter combination was scaled up to bioreactor cultivations and compared to a mono-directional construct (expressing only the peroxygenase). The strains were screened for the target enzyme productivity in a dynamic matter, investigating both derepression and mixed feeding (methanol-glycerol) for induction. Set-points from bioreactor screenings, resulting in the highest peroxygenase productivity, for derepressed and methanol-based induction were chosen to conduct dedicated peroxygenase production runs and were analyzed with RT-qPCR. Results demonstrated that methanol-free cultivation is superior over mixed feeding in regard to cell-specific enzyme productivity. RT-qPCR analysis confirmed that mixed feeding resulted in high stress for the host cells, impeding high productivity. Moreover, the bi-directionalized construct resulted in a much higher specific enzymatic activity over the mono-directional expression system. CONCLUSIONS: In this study, we demonstrate a methanol-free bioreactor production strategy for an unspecific peroxygenase, yet not shown in literature. Hence, bi-directionalized assisted protein expression in K. phaffii, cultivated under derepressed conditions, is indicated to be an effective production strategy for heme-containing oxidoreductases. This very production strategy might be opening up further opportunities for biocatalysis.


Assuntos
Reatores Biológicos , Oxigenases de Função Mista , Regiões Promotoras Genéticas , Proteínas Recombinantes , Saccharomycetales , Saccharomycetales/genética , Saccharomycetales/metabolismo , Saccharomycetales/enzimologia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Metanol/metabolismo
9.
Microorganisms ; 12(6)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38930604

RESUMO

Lignocellulosic biomass is abundant on Earth, and there are multiple acidic pretreatment options to separate the cellulose, hemicellulose, and lignin fraction. By doing so, the fermentation inhibitors 5-Hydroxymethylfurfural (HMF) and furfural (FF) are produced in varying concentrations depending on the hydrolyzed substrate. In this study, the impact of these furanic compounds on Chlorella vulgaris growth and photosynthetic activity was analyzed. Both compounds led to a prolonged lag phase in Chlorella vulgaris growth. While the photosynthetic yield Y(II) was not significantly influenced in cultivations containing HMF, FF significantly reduced Y(II). The conversion of 5-Hydroxymethylfurfural and furfural to 5-Hydroxymethyl-2-Furoic Acid and 2-Furoic Acid was observed. In total, 100% of HMF and FF was converted in photoautotrophic and mixotrophic Chlorella vulgaris cultivations. The results demonstrate that Chlorella vulgaris is, as of now, the first known microalgal species converting furanic compounds.

10.
Anal Bioanal Chem ; 416(12): 3019-3032, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38573344

RESUMO

Inclusion bodies (IBs) are protein aggregates formed as a result of overexpression of recombinant protein in E. coli. The formation of IBs is a valuable strategy of recombinant protein production despite the need for additional processing steps, i.e., isolation, solubilization and refolding. Industrial process development of protein refolding is a labor-intensive task based largely on empirical approaches rather than knowledge-driven strategies. A prerequisite for knowledge-driven process development is a reliable monitoring strategy. This work explores the potential of intrinsic tryptophan and tyrosine fluorescence for real-time and in situ monitoring of protein refolding. In contrast to commonly established process analytical technology (PAT), this technique showed high sensitivity with reproducible measurements for protein concentrations down to 0.01 g L - 1 . The change of protein conformation during refolding is reflected as a shift in the position of the maxima of the tryptophan and tyrosine fluorescence spectra as well as change in the signal intensity. The shift in the peak position, expressed as average emission wavelength of a spectrum, was correlated to the amount of folding intermediates whereas the intensity integral correlates to the extent of aggregation. These correlations were implemented as an observation function into a mechanistic model. The versatility and transferability of the technique were demonstrated on the refolding of three different proteins with varying structural complexity. The technique was also successfully applied to detect the effect of additives and process mode on the refolding process efficiency. Thus, the methodology presented poses a generic and reliable PAT tool enabling real-time process monitoring of protein refolding.


Assuntos
Corpos de Inclusão , Redobramento de Proteína , Espectrometria de Fluorescência , Corpos de Inclusão/química , Corpos de Inclusão/metabolismo , Espectrometria de Fluorescência/métodos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Triptofano/química , Escherichia coli/metabolismo , Escherichia coli/química , Tirosina/química , Fluorescência , Dobramento de Proteína
11.
Bioresour Technol ; 399: 130535, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38492653

RESUMO

For a sustainable economy, biorefineries that use second-generation feedstocks to produce biochemicals and biofuels are essential. However, the exact composition of renewable feedstocks depends on the natural raw materials used and is therefore highly variable. In this contribution, a process analytical technique (PAT) strategy for determining the sugar composition of lignocellulosic process streams in real-time to enable better control of bioprocesses is presented. An in-line mid-IR probe was used to acquire spectra of ultra-filtered spent sulfite liquor (UF-SSL). Independent partial least squares models were developed for the most abundant sugars in the UF-SSL. Up to 5 sugars were quantified simultaneously to determine the sugar concentration and composition of the UF-SSL. The lowest root mean square errors of the predicted values obtained per analyte were 1.02 g/L arabinose, 1.25 g/L galactose, 0.50 g/L glucose, 1.60 g/L mannose, and 0.85 g/L xylose. Equipped with this novel PAT tool, new bioprocessing strategies can be developed for UF-SSL.


Assuntos
Glucose , Açúcares , Fermentação , Espectroscopia de Infravermelho com Transformada de Fourier , Glucose/química , Xilose/química , Sulfitos
12.
Front Bioeng Biotechnol ; 12: 1392514, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38532877

RESUMO

[This corrects the article DOI: 10.3389/fbioe.2023.1249196.].

13.
Appl Microbiol Biotechnol ; 108(1): 262, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483568

RESUMO

The increasing demand for rare earth elements (REEs) has spurred interest in the development of recovery methods from aqueous waste streams. Acidophilic microalgae have gained attention for REE biosorption as they can withstand high concentrations of transition metals and do not require added organic carbon to grow, potentially allowing simultaneous sorption and self-replication of the sorbent. Here, we assessed the potential of Galdieria sulphuraria for REE biosorption under acidic, nutrient-replete conditions from solutions containing ≤ 15 ppm REEs. Sorption at pH 1.5-2.5 (the growth optimum of G. sulphuraria) was poor but improved up to 24-fold at pH 5.0 in phosphate-free conditions. Metabolic activity had a negative impact on REE sorption, additionally challenging the feasibility of REE biosorption under ideal growth conditions for acidophiles. We further examined the possibility of REE biosorption in the presence of phosphate for biomass growth at elevated pH (pH ≥ 2.5) by assessing aqueous La concentrations in various culture media. Three days after adding La into the media, dissolved La concentrations were up to three orders of magnitude higher than solubility predictions due to supersaturation, though LaPO4 precipitation occurred under all conditions when seed was added. We concluded that biosorption should occur separately from biomass growth to avoid REE phosphate precipitation. Furthermore, we demonstrated the importance of proper control experiments in biosorption studies to assess potential interactions between REEs and matrix ions such as phosphates. KEY POINTS: • REE biosorption with G. sulphuraria increases significantly when raising pH to 5 • Phosphate for biosorbent growth has to be supplied separately from biosorption • Biosorption studies have to assess potential matrix effects on REE behavior.


Assuntos
Metais Terras Raras , Microalgas , Microalgas/metabolismo , Fosfatos , Metais Terras Raras/metabolismo , Meios de Cultura , Concentração de Íons de Hidrogênio
14.
Eur J Pharm Biopharm ; 197: 114213, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38346479

RESUMO

Neutral and positively charged archaeal ether lipids (AEL) have been studied for their utilization as novel delivery systems for pDNA, showing efficient immune response with a strong memory effect while lacking noticeable toxicity. Recent technological advances placed mRNA lipid nanoparticles (LNPs) at the forefront of next-generation delivery systems; however, no study has examined AELs in mRNA delivery yet. In this study, we investigated either a crude lipid extract or the purified tetraether lipid caldarchaeol from Sulfolobus acidocaldarius as potential novel excipients for mRNA LNPs. Depending on their molar share in the respective LNP, particle uptake, and mRNA expression levels could be increased by up to 10-fold in in vitro transfection experiments using both primary cell sources (HSMM) and established cell lines (Caco-2, C2C12) compared to a well-known reference formulation. This increased efficiency might be linked to a substantial effect on endosomal escape, indicating fusogenic and lyotropic features of AELs. This study shows the high value of archaeal ether lipids for mRNA delivery and provides a solid foundation for future in vivo experiments and further research.


Assuntos
Lipídeos , Nanopartículas , Humanos , Éter , Archaea , RNA Mensageiro/genética , Células CACO-2 , Lipossomos , Transfecção , Éteres , Etil-Éteres , RNA Interferente Pequeno
15.
Appl Microbiol Biotechnol ; 108(1): 44, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38180554

RESUMO

Poly-ß-hydroxybutyrate (PHB) is a potential source of biodegradable plastics that are environmentally friendly due to their complete degradation to water and carbon dioxide. This study aimed to investigate PHB production in the cyanobacterium Synechocystis sp. PCC6714 MT_a24 in an outdoor bioreactor using urban wastewater as a sole nutrient source. The culture was grown in a thin-layer raceway pond with a working volume of 100 L, reaching a biomass density of up to 3.5 g L-1 of cell dry weight (CDW). The maximum PHB content was found under nutrient-limiting conditions in the late stationary phase, reaching 23.7 ± 2.2% PHB per CDW. These data are one of the highest reported for photosynthetic production of PHB by cyanobacteria, moreover using urban wastewater in pilot-scale cultivation which multiplies the potential of sustainable cultivation approaches. Contamination by grazers (Poterioochromonas malhamensis) was managed by culturing Synechocystis in a highly alkaline environment (pH about 10.5) which did not significantly affect the culture growth. Furthermore, the strain MT_a24 showed significant wastewater nutrient remediation removing about 72% of nitrogen and 67% of phosphorus. These trials demonstrate that the photosynthetic production of PHB by Synechocystis sp. PCC6714 MT_a24 in the outdoor thin-layer bioreactor using urban wastewater and ambient carbon dioxide. It shows a promising approach for the cost-effective and sustainable production of biodegradable carbon-negative plastics. KEY POINTS: • High PHB production by cyanobacteria in outdoor raceway pond • Urban wastewater used as a sole source of nutrients for phototrophic growth • Potential for cost-effective and sustainable production of biodegradable plastics.


Assuntos
Plásticos Biodegradáveis , Synechocystis , Dióxido de Carbono , Hidroxibutiratos , Poliésteres , Lagoas , Águas Residuárias
16.
J Biotechnol ; 379: 65-77, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38036002

RESUMO

A broad application spectrum ranging from clinical diagnostics to biosensors in a variety of sectors, makes the enzyme Lactate dehydrogenase (LDH) highly interesting for recombinant protein production. Expression of recombinant LDH is currently mainly carried out in uncontrolled shake-flask cultivations leading to protein that is mostly produced in its soluble form, however in rather low yields. Inclusion body (IB) processes have gathered a lot of attention due to several benefits like increased space-time yields and high purity of the target product. Thus, to investigate the suitability of this processing strategy for ldhL1 production, a fed-batch fermentation steering the production of IBs rather than soluble product formation was developed. It was shown that the space-time-yield of the fermentation could be increased almost 3-fold by increasing qs to 0.25 g g-1 h-1 which corresponds to 21% of qs,max, and keeping the temperature at 37°C after induction. Solubilization and refolding unit operations were developed to regain full bioactivity of the ldhL1. The systematic approach in screening for solubilization and refolding conditions revealed buffer compositions and processing strategies that ultimately resulted in 50% product recovery in the refolding step, revealing major optimization potential in the downstream processing chain. The recovered ldhL1 showed an optimal activity at pH 5.5 and 30∘C with a high catalytic activity and KM values of 0.46 mM and 0.18 mM for pyruvate and NADH, respectively. These features, show that the here produced LDH is a valuable source for various commercial applications, especially considering low pH-environments.


Assuntos
Corpos de Inclusão , L-Lactato Desidrogenase , L-Lactato Desidrogenase/genética , L-Lactato Desidrogenase/metabolismo , Proteínas Recombinantes/química , Corpos de Inclusão/metabolismo , Fermentação
17.
Int J Pharm ; 645: 123434, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37739097

RESUMO

Cannabidiol (CBD) has received great scientific interest due to its numerous therapeutic applications. Degradation in the gastrointestinal (GI) tract, first-pass metabolism, and low water solubility restrain bioavailability of CBD to only 6% in current oral administration. Lipid-based nanocarriers are delivery systems that may enhance accessibility and solubility of hydrophobic payloads, such as CBD. Conventional lecithin-derived liposomes, however, have limitations regarding stability in the GI tract and long-term storage. Ether lipid-based archaeosomes may have the potential to overcome these problems due to chemical and structural uniqueness. In this study, we compared lecithin-derived liposomes with archaeosomes in their applicability as an oral delivery system of CBD. We evaluated drug load, storage stability, stability in a simulated GI tract, and in vitro particle uptake in Caco-2 cells. Loading capacity was 6-fold higher in archaeosomes than conventional liposomes while providing a stable formulation over six months after lyophilization. In a simulated GI tract, CBD recovery in archaeosomes was 57 ± 3% compared to only 34 ± 1% in conventional liposomes and particle uptake in Caco-2 cells was enhanced up to 6-fold. Our results demonstrate that archaeosomes present an interesting solution to tackle current issues of oral CBD formulations due to improved stability and endocytosis.


Assuntos
Canabidiol , Lipossomos , Humanos , Lipossomos/química , Células CACO-2 , Lecitinas , Administração Oral , Sistemas de Liberação de Medicamentos
18.
Front Bioeng Biotechnol ; 11: 1249196, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37545893

RESUMO

Throughout the twenty-first century, the view on inclusion bodies (IBs) has shifted from undesired by-products towards a targeted production strategy for recombinant proteins. Inclusion bodies can easily be separated from the crude extract after cell lysis and contain the product in high purity. However, additional solubilization and refolding steps are required in the processing of IBs to recover the native protein. These unit operations remain a highly empirical field of research in which processes are developed on a case-by-case basis using elaborate screening strategies. It has been shown that a reduction in denaturant concentration during protein solubilization can increase the subsequent refolding yield due to the preservation of correctly folded protein structures. Therefore, many novel solubilization techniques have been developed in the pursuit of mild solubilization conditions that avoid total protein denaturation. In this respect, ionic liquids have been investigated as promising agents, being able to solubilize amyloid-like aggregates and stabilize correctly folded protein structures at the same time. This review briefly summarizes the state-of-the-art of mild solubilization of IBs and highlights some challenges that prevent these novel techniques from being yet adopted in industry. We suggest mechanistic models based on the thermodynamics of protein unfolding with the aid of molecular dynamics simulations as a possible approach to solve these challenges in the future.

19.
Front Bioeng Biotechnol ; 11: 1160012, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37609112

RESUMO

The two major scale-up criteria in continuously stirred bioreactors are 1) constant aerated power input per volume (Pg/Vl), and 2) the volumetric O2 mass transfer coefficient (kla). However, Pg/Vl is only influenced by the stirrer geometry, stirrer speed, aeration and working volume, while the kla is additionally affected by physiochemical properties of the medium (temperature, pH, salt content, etc.), sparging of gas and also by the bioreactor design. The extremophilic archaeon Sulfolobus acidocaldarius, thriving at 75°C and pH 3.0, has the potential for many biotechnological applications. However, previous studies imply that the family Sulfolobaceae might be affected by higher oxygen concentration in the headspace (>26%). Hence, adequate oxygen supply without being toxic has to be ensured throughout the different scales. In this study, the scale-up criteria Pg/Vl and kla were analyzed and compared in a 2 L chemostat cultivation of S. acidocaldarius on a defined growth medium at 75°C and a pH value of 3.0, using two different types of spargers at the same aerated power input. The scale-up criterion kLa, ensuring a high specific growth rate as well as viability, was then used for scaleup to 20 L and 200 L. By maintaining a constant kla comparable dry cell weight, specific growth rate, specific substrate uptake rates and viability were observed between all investigated scales. This procedure harbors the potential for further scale-up to industrial size bioreactors.

20.
FEBS J ; 290(15): 3812-3827, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37004154

RESUMO

Glycosylation is the most prevalent protein post-translational modification, with a quarter of glycosylated proteins having enzymatic properties. Yet, the full impact of glycosylation on the protein structure-function relationship, especially in enzymes, is still limited. Here, we show that glycosylation rigidifies the important commercial enzyme horseradish peroxidase (HRP), which in turn increases its turnover and stability. Circular dichroism spectroscopy revealed that glycosylation increased holo-HRP's thermal stability and promoted significant helical structure in the absence of haem (apo-HRP). Glycosylation also resulted in a 10-fold increase in enzymatic turnover towards o-phenylenediamine dihydrochloride when compared to its nonglycosylated form. Utilising a naturally occurring site-specific probe of active site flexibility (Trp117) in combination with red-edge excitation shift fluorescence spectroscopy, we found that glycosylation significantly rigidified the enzyme. In silico simulations confirmed that glycosylation largely decreased protein backbone flexibility, especially in regions close to the active site and the substrate access channel. Thus, our data show that glycosylation does not just have a passive effect on HRP stability but can exert long-range effects that mediate the 'native' enzyme's activity and stability through changes in inherent dynamics.


Assuntos
Processamento de Proteína Pós-Traducional , Estabilidade Enzimática , Glicosilação , Domínio Catalítico , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA