Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 126(3): 032502, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33543945

RESUMO

The mean-square charge radii of ^{207,208}Hg (Z=80, N=127, 128) have been studied for the first time and those of ^{202,203,206}Hg (N=122, 123, 126) remeasured by the application of in-source resonance-ionization laser spectroscopy at ISOLDE (CERN). The characteristic kink in the charge radii at the N=126 neutron shell closure has been revealed, providing the first information on its behavior below the Z=82 proton shell closure. A theoretical analysis has been performed within relativistic Hartree-Bogoliubov and nonrelativistic Hartree-Fock-Bogoliubov approaches, considering both the new mercury results and existing lead data. Contrary to previous interpretations, it is demonstrated that both the kink at N=126 and the odd-even staggering (OES) in its vicinity can be described predominately at the mean-field level and that pairing does not need to play a crucial role in their origin. A new OES mechanism is suggested, related to the staggering in the occupation of the different neutron orbitals in odd- and even-A nuclei, facilitated by particle-vibration coupling for odd-A nuclei.

4.
Phys Rev Lett ; 124(4): 042503, 2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32058764

RESUMO

There is sparse direct experimental evidence that atomic nuclei can exhibit stable "pear" shapes arising from strong octupole correlations. In order to investigate the nature of octupole collectivity in radium isotopes, electric octupole (E3) matrix elements have been determined for transitions in ^{222,228}Ra nuclei using the method of sub-barrier, multistep Coulomb excitation. Beams of the radioactive radium isotopes were provided by the HIE-ISOLDE facility at CERN. The observed pattern of E3 matrix elements for different nuclear transitions is explained by describing ^{222}Ra as pear shaped with stable octupole deformation, while ^{228}Ra behaves like an octupole vibrator.

5.
Nat Commun ; 10(1): 2473, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31171788

RESUMO

There is a large body of evidence that atomic nuclei can undergo octupole distortion and assume the shape of a pear. This phenomenon is important for measurements of electric-dipole moments of atoms, which would indicate CP violation and hence probe physics beyond the Standard Model of particle physics. Isotopes of both radon and radium have been identified as candidates for such measurements. Here, we observed the low-lying quantum states in 224Rn and 226Rn by accelerating beams of these radioactive nuclei. We show that radon isotopes undergo octupole vibrations but do not possess static pear-shapes in their ground states. We conclude that radon atoms provide less favourable conditions for the enhancement of a measurable atomic electric-dipole moment.

6.
Phys Rev Lett ; 116(13): 132501, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27081972

RESUMO

In this contribution it is explored whether γ-ray spectroscopy following ß decay with high Q values from mother nuclei with low ground-state spin can be exploited as a probe for the pygmy dipole resonance. The suitability of this approach is demonstrated by a comparison between data from photon scattering, ^{136}Xe(γ,γ^{'}), and ^{136}I [J_{0}^{π}=(1^{-})]→^{136}Xe^{*} ß-decay data. It is demonstrated that ß decay populates 1^{-} levels associated with the pygmy dipole resonance, but only a fraction of those. The complementary insight into the wave functions probed by ß decay is elucidated by calculations within the quasiparticle phonon model. It is demonstrated that ß decay dominantly populates complex configurations, which are only weakly excited in inelastic scattering experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...