Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
J Neurol ; 270(12): 6033-6043, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37648911

RESUMO

BACKGROUND: Longitudinal measures of structural brain changes using MRI in relation to clinical features and progression patterns in PD have been assessed in previous studies, but few were conducted in well-defined and large cohorts, including prospective clinical assessments of both motor and non-motor symptoms. OBJECTIVE: We aimed to identify brain volumetric changes characterizing PD patients, and determine whether regional brain volumetric characteristics at baseline can predict motor, psycho-behavioral and cognitive evolution at one year in a prospective cohort of PD patients. METHODS: In this multicentric 1 year longitudinal study, PD patients and healthy controls from the MPI-R2* cohort were assessed for demographical, clinical and brain volumetric characteristics. Distinct subgroups of PD patients according to motor, cognitive and psycho-behavioral evolution were identified at the end of follow-up. RESULTS: One hundred and fifty PD patients and 73 control subjects were included in our analysis. Over one year, there was no significant difference in volume variations between PD and control subjects, regardless of the brain region considered. However, we observed a reduction in posterior cingulate cortex volume at baseline in PD patients with motor deterioration at one year (p = 0.017). We also observed a bilateral reduction of the volume of the amygdala (p = 0.015 and p = 0.041) and hippocampus (p = 0.015 and p = 0.053) at baseline in patients with psycho-behavioral deterioration, regardless of age, dopaminergic treatment and center. CONCLUSION: Brain volumetric characteristics at baseline may predict clinical trajectories at 1 year in PD as posterior cingulate cortex atrophy was associated with motor decline, while amygdala and hippocampus atrophy were associated with psycho-behavioral decline.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/complicações , Estudos Longitudinais , Estudos Prospectivos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Atrofia/patologia
2.
Nat Med ; 29(6): 1487-1499, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37291212

RESUMO

Cannabis use disorder (CUD) is widespread, and there is no pharmacotherapy to facilitate its treatment. AEF0117, the first of a new pharmacological class, is a signaling-specific inhibitor of the cannabinoid receptor 1 (CB1-SSi). AEF0117 selectively inhibits a subset of intracellular effects resulting from Δ9-tetrahydrocannabinol (THC) binding without modifying behavior per se. In mice and non-human primates, AEF0117 decreased cannabinoid self-administration and THC-related behavioral impairment without producing significant adverse effects. In single-ascending-dose (0.2 mg, 0.6 mg, 2 mg and 6 mg; n = 40) and multiple-ascending-dose (0.6 mg, 2 mg and 6 mg; n = 24) phase 1 trials, healthy volunteers were randomized to ascending-dose cohorts (n = 8 per cohort; 6:2 AEF0117 to placebo randomization). In both studies, AEF0117 was safe and well tolerated (primary outcome measurements). In a double-blind, placebo-controlled, crossover phase 2a trial, volunteers with CUD were randomized to two ascending-dose cohorts (0.06 mg, n = 14; 1 mg, n = 15). AEF0117 significantly reduced cannabis' positive subjective effects (primary outcome measurement, assessed by visual analog scales) by 19% (0.06 mg) and 38% (1 mg) compared to placebo (P < 0.04). AEF0117 (1 mg) also reduced cannabis self-administration (P < 0.05). In volunteers with CUD, AEF0117 was well tolerated and did not precipitate cannabis withdrawal. These data suggest that AEF0117 is a safe and potentially efficacious treatment for CUD.ClinicalTrials.gov identifiers: NCT03325595 , NCT03443895 and NCT03717272 .


Assuntos
Cannabis , Alucinógenos , Abuso de Maconha , Síndrome de Abstinência a Substâncias , Animais , Camundongos , Método Duplo-Cego , Dronabinol/efeitos adversos , Alucinógenos/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto , Síndrome de Abstinência a Substâncias/tratamento farmacológico
3.
Neuroimage Clin ; 36: 103231, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36279753

RESUMO

Several postmortem studies have shown iron accumulation in the substantia nigra of Parkinson's disease patients. Iron concentration can be estimated via MRI-R2∗ mapping. To assess the changes in R2∗ occurring in Parkinson's disease patients compared to controls, a multicentre transversal study was carried out on a large cohort of Parkinson's disease patients (n = 163) with matched controls (n = 82). In this study, 44 patients and 11 controls were removed due to motion artefacts, 21 patient and 6 controls to preserve matching. Thus, 98 patients and 65 age and sex-matched healthy subjects were selected with enough image quality. The study was conducted on patients with early to late stage Parkinson's disease. The images were acquired at 3Tesla in 12 clinical centres. R2∗ values were measured in subcortical regions of interest (substantia nigra, red nucleus, striatum, globus pallidus externus and globus pallidus internus) contralateral (dominant side) and ipsilateral (non dominant side) to the most clinically affected hemibody. As the observed inter-subject R2∗ variability was significantly higher than the disease effect, an original strategy (intrasubject subcortical quantitative referencing, ISQR) was developed using the measurement of R2∗ in the red nucleus as an intra-subject reference. R2∗ values significantly increased in Parkinson's disease patients when compared with controls; in the substantia nigra (SN) in the dominant side (D) and in the non dominant side (ND), respectively (PSN_D and PSN_ND < 0.0001). After stratification into four subgroups according to the disease duration, no significant R2∗ difference was found in all regions of interest when comparing Parkinson's disease subgroups. By applying our ISQR strategy, R2(ISQR)∗ values significantly increased in the substantia nigra (PSN_D and PSN_ND < 0.0001) when comparing all Parkinson's disease patients to controls. R2(ISQR)∗ values in the substantia nigra significantly increased with the disease duration (PSN_D = 0.01; PSN_ND = 0.03) as well as the severity of the disease (Hoehn & Yahr scale <2 and ≥ 2, PSN_D = 0.02). Additionally, correlations between R2(ISQR)∗ and clinical features, mainly related to the severity of the disease, were found. Our results support the use of ISQR to reduce variations not directly related to Parkinson's disease, supporting the concept that ISQR strategy is useful for the evaluation of Parkinson's disease.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico por imagem , Substância Negra/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Núcleo Rubro , Ferro
4.
Mol Cell Neurosci ; 121: 103750, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35697176

RESUMO

The central serotonin2B receptor (5-HT2BR) modulates 5-HT and dopamine (DA) neuronal function in the mammalian brain and has been suggested as a potential target for the treatment of neuropsychiatric disorders involving derangements of these monoamine systems, such as schizophrenia, cocaine abuse and dependence and major depressive disorder. Studies in rats and mice yielded contrasting results on the control of 5-HT/DA networks by 5-HT2BRs, thereby leading to opposite views on the therapeutic potential of 5-HT2BR agents for treating the above disorders. These discrepancies may result from anatomo-functional differences related to a different cellular location of 5-HT2BRs in rat and mouse brain. Using immunohistochemistry, we assessed this hypothesis by examining the expression of 5-HT2BRs in 5-HT and GABAergic neurons of rats and mice within different subregions of the dorsal raphe nucleus (DRN), currently considered as the main site of action of 5-HT2B agents. Likewise, using in vivo microdialysis, we examined their functional relevance in the control of DRN 5-HT outflow, a surrogate index of 5-HT neuronal activity. In the DRN of both species, 5-HT2BRs are expressed in 5-HT cells expressing tryptophan hydroxylase 2 (TPH2), in GABAergic cells expressing glutamic acid decarboxylase 67 (GAD67), and in cells expressing both markers (GAD67 & TPH2; i.e., GABA-expressing 5-HT neurons). The proportion of 5-HT2BR-positive cells expressing only TPH2 was significantly larger in mouse than in rat DRN, whereas the opposite holds true for the expression in cells expressing GAD67 & TPH2. No major species differences were found in the dorsal and ventral subregions. In contrast, the lateral subregion exhibited large differences, with a predominant expression of 5-HT2BRs in TPH2-positive cells in mice (67.2 vs 19.9 % in rats), associated with a lower expression in GAD67 & TPH2 cells (7.9 % in mice vs 41.5 % in rats). Intra-DRN (0.1 µM) administration of the preferential 5-HT2BR agonist BW 723C86 decreased and increased DRN 5-HT outflow in rats and mice respectively, both effects being prevented by the intra-DRN perfusion of the selective 5-HT2BR antagonist RS 127445 (0.1 µM). Altogether, these results show the existence of anatomical differences in the cellular expression of 5-HT2BRs in the rat and mouse DRN, which translate into an opposite control of 5-HT outflow. Also, they highlight the relevance of the subset of GAD67-positive 5-HT neurons as a key factor responsible for the functional differences between rats and mice in terms of 5-HT neuronal activity modulation.


Assuntos
Núcleo Dorsal da Rafe , Receptor 5-HT2B de Serotonina , Neurônios Serotoninérgicos , Animais , Núcleo Dorsal da Rafe/metabolismo , Camundongos , Ratos , Receptor 5-HT2B de Serotonina/metabolismo , Neurônios Serotoninérgicos/metabolismo , Serotonina/farmacologia
5.
Mov Disord ; 36(1): 246-251, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32956556

RESUMO

BACKGROUND: Loss of medullary serotonin (5-hydroxytryptamine) neurons has been linked to respiratory disturbances in multiple system atrophy (MSA). Broader 5-hydroxytryptamine dysfunction may contribute to additional motor/nonmotor symptoms in MSA. The objective of this study was to compare brain 5-hydroxytryptamine1A receptor binding between MSA and healthy controls. Secondary objectives were to compare 5-hydroxytryptamine1A receptor binding between MSA and Parkinson's disease (PD) and to assess potential associations with motor/nonmotor symptoms in MSA. METHODS: 2'-Methoxyphenyl-(N-2'-pyridinyl)-p-18F-fluoro-benzamidoethylpiperazine positron emission tomography was performed in matched MSA patients (n = 16), PD patients (n = 15), and healthy controls (n = 18). RESULTS: 2'-Methoxyphenyl-(N-2'-pyridinyl)-p-18F-fluoro-benzamidoethylpiperazine distribution volume ratios were lower in MSA patients versus healthy controls in several brain regions including the caudate, raphe nuclei, thalamus, and brain stem. Distribution volume ratios were also lower in brain stem and amygdala in MSA versus PD. Moderate associations were found between 2'-methoxyphenyl-(N-2'-pyridinyl)-p-18F-fluoro-benzamidoethylpiperazine distribution volume ratios and fatigue, pain, and apathy in MSA. CONCLUSION: Our results demonstrate 5-hydroxytryptamine dysfunction in several brain regions in MSA, which may contribute to fatigue, pain, and apathy. © 2020 International Parkinson and Movement Disorder Society.


Assuntos
Atrofia de Múltiplos Sistemas , Receptor 5-HT1A de Serotonina , Encéfalo/diagnóstico por imagem , Humanos , Atrofia de Múltiplos Sistemas/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Tomografia Computadorizada por Raios X
6.
Clin Case Rep ; 8(9): 1806-1808, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32983500

RESUMO

The early onset of gait akinesia should not rule out the diagnosis of hereditary chorea. It would be helpful to proceed to a whole-genome and long-read sequencing in order to track a new pathogenic variant including noncoding repeat expansion.

7.
Neuropharmacology ; 180: 108309, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32956675

RESUMO

Serotonin2B receptor (5-HT2BR) antagonists inhibit cocaine-induced hyperlocomotion independently of changes of accumbal dopamine (DA) release. Given the tight relationship between accumbal DA activity and locomotion, and the inhibitory role of medial prefrontal cortex (mPFC) DA on subcortical DA neurotransmission and DA-dependent behaviors, it has been suggested that the suppressive effect of 5-HT2BR antagonists on cocaine-induced hyperlocomotion may result from an activation of mPFC DA outflow which would subsequently inhibit accumbal DA neurotransmission. Here, we tested this hypothesis by means of the two selective 5-HT2BR antagonists, RS 127445 and LY 266097, using a combination of neurochemical, behavioral and cellular approaches in male rats. The intraperitoneal (i.p.) administration of RS 127445 (0.16 mg/kg) or LY 266097 (0.63 mg/kg) potentiated cocaine (10 mg/kg, i.p.)-induced mPFC DA outflow. The suppressant effect of RS 127445 on cocaine-induced hyperlocomotion was no longer observed in rats with local 6-OHDA lesions in the mPFC. Also, RS 127445 blocked cocaine-induced changes of accumbal glycogen synthase kinase (GSK) 3ß phosphorylation, a postsynaptic cellular marker of DA neurotransmission. Finally, in keeping with the location of 5-HT2BRs on GABAergic interneurons in the dorsal raphe nucleus (DRN), the intra-DRN perfusion of the GABAAR antagonist bicuculline (100 µM) prevented the effect of the systemic or local (1 µM, intra-DRN) administration of RS 127445 on cocaine-induced mPFC DA outflow. Likewise, intra-DRN bicuculline injection (0.1 µg/0.2 µl) prevented the effect of the systemic RS 127445 administration on cocaine-induced hyperlocomotion and GSK3ß phosphorylation. These results show that DRN 5-HT2BR blockade suppresses cocaine-induced hyperlocomotion by potentiation of cocaine-induced DA outflow in the mPFC and the subsequent inhibition of accumbal DA neurotransmission.


Assuntos
Córtex Cerebral/metabolismo , Dopamina/metabolismo , Núcleo Dorsal da Rafe/metabolismo , Locomoção/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia , Animais , Córtex Cerebral/efeitos dos fármacos , Cocaína/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Núcleo Dorsal da Rafe/efeitos dos fármacos , Locomoção/fisiologia , Masculino , Núcleo Accumbens/efeitos dos fármacos , Pirimidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor 5-HT2B de Serotonina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
8.
Mov Disord Clin Pract ; 7(5): 531-542, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32626798

RESUMO

BACKGROUND: Late-stage parkinsonism and Parkinson's disease (PD) are insufficiently studied population. Although neuropsychiatric symptoms (eg, psychosis, depression, anxiety, behavioral problems) are frequently present, their prevalence and clinical predictors remain unknown. OBJECTIVE: To determine the prevalence and predictors of neuropsychiatric symptoms in late-stage PD. METHODS: We conducted a multinational study of patients with PD with ≥7 years disease duration and either a Hoehn and Yahr stage ≥4 or a Schwab and England score ≤ 50% in the on stage. Neuropsychiatric symptoms were assessed through interviews with carers using the Neuropsychiatric Inventory, with a frequency × severity score ≥ 4, indicating clinically relevant symptoms. The determinants analyzed were demographic characteristics, medication, and motor and nonmotor symptoms. Univariate and multivariate logistic analyses were performed on predictors of clinically relevant neuropsychiatric symptoms. RESULTS: A total of 625 patients were recruited in whom the Neuropsychiatric Inventory could be completed. In 92.2% (576/625) of the patients, at least 1 neuropsychiatric symptom was present, and 75.5% (472/625) had ≥1 clinically relevant symptom. The most common clinically relevant symptoms were apathy (n = 242; 38.9%), depression (n = 213; 34.5%), and anxiety (n = 148; 23.8%). The multivariate analysis revealed unique sets of predictors for each symptom, particularly the presence of other neuropsychiatric features, cognitive impairment, daytime sleepiness. CONCLUSION: Neuropsychiatric symptoms are common in late-stage PD. The strongest predictors are the presence of other neuropsychiatric symptoms. Clinicians involved in the care for patients with late-stage PD should be aware of these symptoms in this specific disease group and proactively explore other psychiatric comorbidities once a neuropsychiatric symptom is recognized.

9.
Exp Neurol ; 311: 57-66, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30257183

RESUMO

The central serotonin2B receptor (5-HT2BR) is a well-established modulator of dopamine (DA) neuron activity in the rodent brain. Recent studies in rats have shown that the effect of 5-HT2BR antagonists on accumbal and medial prefrontal cortex (mPFC) DA outflow results from a primary action in the dorsal raphe nucleus (DRN), where they activate 5-HT neurons innervating the mPFC. Although the mechanisms underlying this interaction remain largely unknown, data in the literature suggest the involvement of DRN GABAergic interneurons in the control of 5-HT activity. The present study examined this hypothesis using in vivo (intracerebral microdialysis) and in vitro (immunohistochemistry coupled to reverse transcription-polymerase chain reaction) experimental approaches in rats. Intraperitoneal (0.16 mg/kg) or intra-DRN (1 µM) administration of the selective 5-HT2BR antagonist RS 127445 increased 5-HT outflow in both the DRN and the mPFC, these effects being prevented by the intra-DRN perfusion of the GABAA antagonist bicuculline (100 µM), as well as by the subcutaneous (0.16 mg/kg) or the intra-DRN (0.1 µM) administration of the selective 5-HT1AR antagonist WAY 100635. The increase in DRN 5-HT outflow induced by the intra-DRN administration of the selective 5-HT reuptake inhibitor citalopram (0.1 µM) was potentiated by the intra-DRN administration (0.5 µM) of RS 127445 only in the absence of bicuculline perfusion. Finally, in vitro experiments revealed the presence of the 5-HT2BR mRNA on DRN GABAergic interneurons. Altogether, these results show that, in the rat DRN, 5-HT2BRs are located on GABAergic interneurons, and exert a tonic inhibitory control on 5-HT neurons innervating the mPFC.


Assuntos
Núcleo Dorsal da Rafe/metabolismo , Neurônios GABAérgicos/metabolismo , Inibição Neural/fisiologia , Receptor 5-HT2B de Serotonina/metabolismo , Neurônios Serotoninérgicos/metabolismo , Animais , Núcleo Dorsal da Rafe/efeitos dos fármacos , Antagonistas de Receptores de GABA-A/administração & dosagem , Neurônios GABAérgicos/efeitos dos fármacos , Injeções Intraventriculares , Masculino , Inibição Neural/efeitos dos fármacos , Pirimidinas/administração & dosagem , Ratos , Ratos Sprague-Dawley , Neurônios Serotoninérgicos/efeitos dos fármacos , Serotonina/metabolismo , Antagonistas da Serotonina/administração & dosagem , Inibidores Seletivos de Recaptação de Serotonina/administração & dosagem , Ácido gama-Aminobutírico/metabolismo
10.
Pharmacol Ther ; 181: 143-155, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28757154

RESUMO

The serotonin2B receptor (5-HT2BR), which was first cloned and characterized in the rat stomach fundus, is the most recent addition to the 5-HT2R family. While its involvement in the regulation of gastrointestinal, vascular, pulmonary and cardiac physiology has been widely investigated, its functional role within the central nervous system (CNS) has received much less attention. Nevertheless, when considering the data available in the literature with regards to the regulatory control exerted by the central 5-HT2BR on dopamine (DA) and serotonin (5-HT) neuron activity, a very interesting picture emerges and highlights the key role of these receptors for future therapeutic strategies of DA-related neuropsychiatric disorders. Thus, the present review, by compiling molecular, biochemical, electrophysiological and behavioral findings from the literature of the past twenty years, aims at providing a sound analysis of the current knowledge supporting the interest of the central 5-HT2BR for future therapeutic avenues. First, we recall the neuroanatomical and functional data supporting the therapeutic relevance of the 5-HT/DA interaction in the CNS. Thereafter, after a short overview of the central expression and molecular properties of the 5-HT2BR, as well as of the 5-HT2BR agonists and antagonists available in the market, we will focus on the functional role of this receptor in the control of 5-HT, DA and neuroglia activity in the rodent brain. Finally, the therapeutic potential of 5-HT2BR antagonists for improved treatment of schizophrenia and drug addiction will be discussed.


Assuntos
Neurônios Dopaminérgicos/fisiologia , Receptor 5-HT2B de Serotonina/efeitos dos fármacos , Receptor 5-HT2B de Serotonina/fisiologia , Esquizofrenia/tratamento farmacológico , Antagonistas do Receptor 5-HT2 de Serotonina/uso terapêutico , Transtornos Relacionados ao Uso de Substâncias/tratamento farmacológico , Animais , Humanos , Neurônios Serotoninérgicos/fisiologia , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia
11.
Neuropharmacology ; 119: 91-99, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28390892

RESUMO

Recent studies have shown that serotonin2B receptor (5-HT2BR) antagonists exert opposite facilitatory and inhibitory effects on dopamine (DA) release in the medial prefrontal cortex (mPFC) and the nucleus accumbens (NAc), respectively, thereby leading to the proposal that these compounds could provide an interesting pharmacological tool for treating schizophrenia. Although the mechanisms underlying these effects remain unknown, several data in the literature suggest that 5-HT1ARs located into the mPFC could participate in this interaction. The present study, using in vivo microdialysis and electrophysiological recordings in rats, assessed this hypothesis by means of two selective 5-HT1AR (WAY 100635) and 5-HT2BR (RS 127445) antagonists. WAY 100635, administered either subcutaneously (0.16 mg/kg, s.c) or locally into the mPFC (0.1 µM), blocked the changes of mPFC and NAc DA release induced by the intraperitoneal administration of RS 127445 (0.16 mg/kg, i.p.). The administration of RS 127445 (0.16 mg/kg, i.p.) increased both dorsal raphe nucleus (DRN) 5-HT neuron firing rate and 5-HT outflow in the mPFC. Likewise, mPFC 5-HT outflow was increased following the intra-DRN injection of RS 127445 (0.032 µg/0.2 µl). Finally, intra-DRN injection of RS 127445 increased and decreased DA outflow in the mPFC and the NAc, respectively, these effects being reversed by the intra-mPFC perfusion of WAY 100635. These results demonstrate the existence of a functional interplay between mPFC 5-HT1ARs and DRN 5-HT2BRs in the control of the DA mesocorticolimbic system, and highlight the clinical interest of this interaction, as both receptors represent an important pharmacological target for the treatment of schizophrenia.


Assuntos
Dopamina/metabolismo , Vias Neurais/fisiologia , Núcleo Accumbens/fisiologia , Córtex Pré-Frontal/metabolismo , Receptor 5-HT1A de Serotonina/metabolismo , Potenciais de Ação/efeitos dos fármacos , Análise de Variância , Animais , Antagonistas de Dopamina/farmacologia , Relação Dose-Resposta a Droga , Masculino , Microdiálise , Vias Neurais/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Piperazinas/farmacologia , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/efeitos dos fármacos , Piridinas/farmacologia , Pirimidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Antagonistas da Serotonina/farmacologia , Fatores de Tempo
12.
Neuropharmacology ; 109: 59-68, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27260325

RESUMO

Recent studies suggest that the central serotonin2B receptor (5-HT2BR) could be an interesting pharmacological target for treating neuropsychiatric disorders related to dopamine (DA) dysfunction, such as schizophrenia. Thus, the present study was aimed at characterizing the role of 5-HT2BRs in the control of ascending DA pathway activity. Using neurochemical, electrophysiological and behavioral approaches, we assessed the effects of two selective 5-HT2BR antagonists, RS 127445 and LY 266097, on in vivo DA outflow in DA-innervated regions, on mesencephalic DA neuronal firing, as well as in behavioral tests predictive of antipsychotic efficacy and tolerability, such as phencyclidine (PCP)-induced deficit in novel object recognition (NOR) test, PCP-induced hyperlocomotion and catalepsy. Both RS 127445 (0.16 mg/kg, i.p.) and LY 266097 (0.63 mg/kg, i.p.) increased DA outflow in the medial prefrontal cortex (mPFC). RS 127445, devoid of effect in the striatum, decreased DA outflow in the nucleus accumbens, and potentiated haloperidol (0.1 mg/kg, s.c.)-induced increase in mPFC DA outflow. Also, RS 127445 decreased the firing rate of DA neurons in the ventral tegmental area, but had no effect in the substantia nigra pars compacta. Finally, both RS 127445 and LY 266097 reversed PCP-induced deficit in NOR test, and reduced PCP-induced hyperlocomotion, without inducing catalepsy. These results demonstrate that 5-HT2BRs exert a differential control on DA pathway activity, and suggest that 5-HT2BR antagonists could represent a new class of drugs for improved treatment of schizophrenia, with an ideal profile of effects expected to alleviate cognitive and positive symptoms, without eliciting extrapyramidal symptoms.


Assuntos
Antipsicóticos/uso terapêutico , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Esquizofrenia/tratamento farmacológico , Esquizofrenia/metabolismo , Antagonistas do Receptor 5-HT2 de Serotonina/uso terapêutico , Animais , Antipsicóticos/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Relação Dose-Resposta a Droga , Masculino , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Ratos , Ratos Sprague-Dawley , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia
13.
Neuropsychopharmacology ; 41(9): 2192-205, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26612422

RESUMO

The type 1 cannabinoid receptor (CB1) modulates numerous neurobehavioral processes and is therefore explored as a target for the treatment of several mental and neurological diseases. However, previous studies have investigated CB1 by targeting it globally, regardless of its two main neuronal localizations on glutamatergic and GABAergic neurons. In the context of cocaine addiction this lack of selectivity is critical since glutamatergic and GABAergic neuronal transmission is involved in different aspects of the disease. To determine whether CB1 exerts different control on cocaine seeking according to its two main neuronal localizations, we used mutant mice with deleted CB1 in cortical glutamatergic neurons (Glu-CB1) or in forebrain GABAergic neurons (GABA-CB1). In Glu-CB1, gene deletion concerns the dorsal telencephalon, including neocortex, paleocortex, archicortex, hippocampal formation and the cortical portions of the amygdala. In GABA-CB1, it concerns several cortical and non-cortical areas including the dorsal striatum, nucleus accumbens, thalamic, and hypothalamic nuclei. We tested complementary components of cocaine self-administration, separating the influence of primary and conditioned effects. Mechanisms underlying each phenotype were explored using in vivo microdialysis and ex vivo electrophysiology. We show that CB1 expression in forebrain GABAergic neurons controls mouse sensitivity to cocaine, while CB1 expression in cortical glutamatergic neurons controls associative learning processes. In accordance, in the nucleus accumbens, GABA-CB1 receptors control cocaine-induced dopamine release and Glu-CB1 receptors control AMPAR/NMDAR ratio; a marker of synaptic plasticity. Our findings demonstrate a critical distinction of the altered balance of Glu-CB1 and GABA-CB1 activity that could participate in the vulnerability to cocaine abuse and addiction. Moreover, these novel insights advance our understanding of CB1 neuropathophysiology.


Assuntos
Encéfalo/efeitos dos fármacos , Cocaína/administração & dosagem , Comportamento de Procura de Droga , Neurônios GABAérgicos/efeitos dos fármacos , Ácido Glutâmico/fisiologia , Neurônios/efeitos dos fármacos , Receptor CB1 de Canabinoide/fisiologia , Animais , Encéfalo/metabolismo , Encéfalo/fisiologia , Sinais (Psicologia) , Dopamina/metabolismo , Neurônios GABAérgicos/fisiologia , Camundongos , Camundongos Knockout , Neurônios/fisiologia , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Reforço Psicológico , Autoadministração
14.
Neuropharmacology ; 97: 329-37, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26116760

RESUMO

The central serotonin2B receptor (5-HT2BR) is currently considered as an interesting pharmacological target for improved treatment of drug addiction. In the present study, we assessed the effect of two selective 5-HT2BR antagonists, RS 127445 and LY 266097, on cocaine-induced hyperlocomotion and dopamine (DA) outflow in the nucleus accumbens (NAc) and the dorsal striatum of freely moving rats. The peripheral administration of RS 127445 (0.16 mg/kg, i.p.) or LY 266097 (0.63 mg/kg, i.p.) significantly reduced basal DA outflow in the NAc shell, but had no effect on cocaine (10 mg/kg, i.p.)-induced DA outflow in this brain region. Also, RS 127445 failed to modify both basal and cocaine-induced DA outflow in the NAc core and the dorsal striatum. Conversely, both 5-HT2BR antagonists reduced cocaine-induced hyperlocomotion. Furthermore, RS 127445 as well as the DA-R antagonist haloperidol (0.1 mg/kg, i.p.) reduced significantly the late-onset hyperlocomotion induced by the DA-R agonist quinpirole (0.5 mg/kg, s.c.). Altogether, these results demonstrate that 5-HT2BR blockade inhibits cocaine-induced hyperlocomotion independently of changes of subcortical DA outflow. This interaction takes place downstream to DA neurons and could involve an action at the level of dorsostriatal and/or NAc DA transmission, in keeping with the importance of these brain regions in the behavioural responses of cocaine. Overall, this study affords additional knowledge into the regulatory control exerted by the 5-HT2BR on ascending DA pathways, and provides additional support to the proposed role of 5-HT2BRs as a new pharmacological target in drug addiction.


Assuntos
Cocaína/farmacologia , Corpo Estriado/efeitos dos fármacos , Inibidores da Captação de Dopamina/farmacologia , Dopamina/metabolismo , Atividade Motora/efeitos dos fármacos , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia , Animais , Corpo Estriado/metabolismo , Agonistas de Dopamina/farmacologia , Antagonistas de Dopamina/farmacologia , Haloperidol/farmacologia , Masculino , Atividade Motora/fisiologia , Pirimidinas/farmacologia , Quimpirol/farmacologia , Ratos Sprague-Dawley , Receptor 5-HT2B de Serotonina/metabolismo
15.
Neuropharmacology ; 89: 375-81, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25446572

RESUMO

The serotonin(2C) receptor (5-HT(2C)R) is known to control dopamine (DA) neuron function by modulating DA neuronal firing and DA exocytosis at terminals. Recent studies assessing the influence of 5-HT(2C)Rs on cocaine-induced neurochemical and behavioral responses have shown that 5-HT2CRs can also modulate mesoaccumbens DA pathway activity at post-synaptic level, by controlling DA transmission in the nucleus accumbens (NAc), independently of DA release itself. A similar mechanism has been proposed to occur at the level of the nigrostriatal DA system. Here, using in vivo microdialysis in freely moving rats and molecular approaches, we assessed this hypothesis by studying the influence of the 5-HT(2C)R agonist Ro 60-0175 on cocaine-induced responses in the striatum. The intraperitoneal (i.p.) administration of 1 mg/kg Ro 60-0175 had no effect on the increase in striatal DA outflow induced by cocaine (15 mg/kg, i.p.). Conversely, Ro 60-0175 inhibited cocaine-induced Fos immunoreactivity and phosphorylation of the DA and c-AMP regulated phosphoprotein of Mr 32 kDa (DARPP-32) at threonine 75 residue in the striatum. Finally, the suppressant effect of Ro 60-0175 on cocaine-induced DARPP-32 phosphorylation was reversed by the selective 5-HT(2C)R antagonist SB 242084 (0.5 mg/kg, i.p.). In keeping with the key role of DARPP-32 in DA neurotransmission, our results demonstrate that 5-HT(2C)Rs are capable of modulating nigrostriatal DA pathway activity at post-synaptic level, by specifically controlling DA signaling in the striatum.


Assuntos
Cocaína/farmacologia , Corpo Estriado/efeitos dos fármacos , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Dopamina/metabolismo , Proteínas Oncogênicas v-fos/metabolismo , Receptor 5-HT2C de Serotonina/metabolismo , Aminopiridinas/farmacologia , Análise de Variância , Animais , Corpo Estriado/metabolismo , Etilaminas/farmacologia , Indóis/farmacologia , Masculino , Microdiálise , Fosforilação/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Agonistas do Receptor de Serotonina/farmacologia , Fatores de Tempo
16.
Addict Biol ; 20(3): 445-57, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-24661380

RESUMO

In keeping with its ability to control the mesoaccumbens dopamine (DA) pathway, the serotonin2C receptor (5-HT2C R) plays a key role in mediating the behavioral and neurochemical effects of drugs of abuse. Studies assessing the influence of 5-HT2C R agonists on cocaine-induced responses have suggested that 5-HT2C Rs can modulate mesoaccumbens DA pathway activity independently of accumbal DA release, thereby controlling DA transmission in the nucleus accumbens (NAc). In the present study, we assessed this hypothesis by studying the influence of the 5-HT2C R agonist Ro 60-0175 on cocaine-induced behavioral, neurochemical and molecular responses. The i.p. administration of 1 mg/kg Ro 60-0175 inhibited hyperlocomotion induced by cocaine (15 mg/kg, i.p.), had no effect on cocaine-induced DA outflow in the shell, and increased it in the core subregion of the NAc. Furthermore, Ro 60-0175 inhibited the late-onset locomotion induced by the subcutaneous administration of the DA-D2 R agonist quinpirole (0.5 mg/kg), as well as cocaine-induced increase in c-Fos immunoreactivity in NAc subregions. Finally, Ro 60-0175 inhibited cocaine-induced phosphorylation of the DA and c-AMP regulated phosphoprotein of Mr 32 kDa (DARPP-32) at threonine residues in the NAc core, this effect being reversed by the selective 5-HT2C R antagonist SB 242084 (0.5 mg/kg, i.p.). Altogether, these findings demonstrate that 5-HT2C Rs are capable of modulating mesoaccumbens DA pathway activity at post-synaptic level by specifically controlling DA signaling in the NAc core subregion. In keeping with the tight relationship between locomotor activity and NAc DA function, this interaction could participate in the inhibitory control of cocaine-induced locomotor activity.


Assuntos
Cocaína/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Núcleo Accumbens/metabolismo , Receptores 5-HT2 de Serotonina/fisiologia , Aminopiridinas/farmacologia , Animais , Dopamina/metabolismo , Agonistas de Dopamina/farmacologia , Fosfoproteína 32 Regulada por cAMP e Dopamina/efeitos dos fármacos , Etilaminas/farmacologia , Indóis/farmacologia , Locomoção/efeitos dos fármacos , Masculino , Atividade Motora/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Quimpirol/farmacologia , Ratos Sprague-Dawley , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Transmissão Sináptica/efeitos dos fármacos
17.
Science ; 343(6166): 94-8, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24385629

RESUMO

Pregnenolone is considered the inactive precursor of all steroid hormones, and its potential functional effects have been largely uninvestigated. The administration of the main active principle of Cannabis sativa (marijuana), Δ(9)-tetrahydrocannabinol (THC), substantially increases the synthesis of pregnenolone in the brain via activation of the type-1 cannabinoid (CB1) receptor. Pregnenolone then, acting as a signaling-specific inhibitor of the CB1 receptor, reduces several effects of THC. This negative feedback mediated by pregnenolone reveals a previously unknown paracrine/autocrine loop protecting the brain from CB1 receptor overactivation that could open an unforeseen approach for the treatment of cannabis intoxication and addiction.


Assuntos
Encéfalo/efeitos dos fármacos , Cannabis/toxicidade , Dronabinol/toxicidade , Pregnenolona/administração & dosagem , Pregnenolona/metabolismo , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/antagonistas & inibidores , Animais , Encéfalo/metabolismo , Antagonistas de Receptores de Canabinoides/administração & dosagem , Masculino , Abuso de Maconha/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Ratos Wistar
18.
J Alzheimers Dis ; 40(1): 57-67, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24326518

RESUMO

BACKGROUND: Knowledge of functional evolution in dementia is crucial for the patients and their families as well as the clinician. OBJECTIVE: This review identifies scales and outcomes used to describe the natural history of functional decline and describes the natural history of functional decline in a representative clinical population sample of published studies of patients with Alzheimer's disease (AD). METHODS: A search of three relevant databases was conducted and limited to articles published in English and French between 1998 to March 2012, using the keywords "Dementia", "Activities of Daily Living", "Instrumental Activities of Daily Living", "Functional Impairment", "Prognosis", and "Disease Progression". RESULTS: The search strategy displayed 683 articles, 20 of which were found to be related to the functional evolution of AD. In these studies, different scales were used to describe the evolution of the functional decline, except for the decline of instrumental activities, for which the Lawton scale was used in all studies. Thus, it is difficult to represent the evolution of the functional decline from a clinical point of view. CONCLUSION: Relatively little data are available to estimate the functional evolution of AD. A consensus with broadened thought is required to know if the progression of the incapacities in these scales is additive or hierarchical.


Assuntos
Atividades Cotidianas/psicologia , Doença de Alzheimer/complicações , Doença de Alzheimer/psicologia , Transtornos Cognitivos/etiologia , Transtornos da Memória/etiologia , Bases de Dados Factuais/estatística & dados numéricos , Progressão da Doença , Humanos , Entrevista Psiquiátrica Padronizada
19.
PLoS One ; 8(11): e79241, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24223913

RESUMO

BACKGROUND: Chorea-acanthocytosis (ChAc) is a neuroacanthocytosis syndrome presenting with severe movement disorders poorly responsive to drug therapy. Case reports suggest that bilateral deep brain stimulation (DBS) of the ventro-postero-lateral internal globus pallidus (GPi) may benefit these patients. To explore this issue, the present multicentre (n=12) retrospective study collected the short and long term outcome of 15 patients who underwent DBS. METHODS: Data were collected in a standardized way 2-6 months preoperatively, 1-5 months (early) and 6 months or more (late) after surgery at the last follow-up visit (mean follow-up: 29.5 months). RESULTS: Motor severity, assessed by the Unified Huntington's Disease Rating Scale-Motor Score, UHDRS-MS), was significantly reduced at both early and late post-surgery time points (mean improvement 54.3% and 44.1%, respectively). Functional capacity (UHDRS-Functional Capacity Score) was also significantly improved at both post-surgery time points (mean 75.5% and 73.3%, respectively), whereas incapacity (UHDRS-Independence Score) improvement reached significance at early post-surgery only (mean 37.3%). Long term significant improvement of motor symptom severity (≥ 20 % from baseline) was observed in 61.5 % of the patients. Chorea and dystonia improved, whereas effects on dysarthria and swallowing were variable. Parkinsonism did not improve. Linear regression analysis showed that preoperative motor severity predicted motor improvement at both post-surgery time points. The most serious adverse event was device infection and cerebral abscess, and one patient died suddenly of unclear cause, 4 years after surgery. CONCLUSION: This study shows that bilateral DBS of the GPi effectively reduces the severity of drug-resistant hyperkinetic movement disorders such as present in ChAc.


Assuntos
Estimulação Encefálica Profunda/métodos , Globo Pálido/fisiopatologia , Neuroacantocitose/fisiopatologia , Neuroacantocitose/terapia , Adulto , Abscesso Encefálico/etiologia , Estudos Transversais , Estimulação Encefálica Profunda/efeitos adversos , Estimulação Encefálica Profunda/instrumentação , Eletrodos Implantados , Feminino , Globo Pálido/cirurgia , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Neuroacantocitose/cirurgia , Infecções Relacionadas à Prótese/etiologia , Estudos Retrospectivos , Fatores de Tempo , Resultado do Tratamento , Adulto Jovem
20.
Exp Brain Res ; 230(4): 537-45, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23748692

RESUMO

This review provides an overview of the role of central serotonin2C (5-HT2C) receptors in drug addiction, specifically focusing on their impact on the neurochemical and behavioral effects of cocaine, one of the most worldwide abused drug. First, we described the neurochemical and electrophysiological mechanisms underlying the interaction between 5-HT2C receptors and the mesocorticolimbic dopaminergic network, in keeping with the key role of this system in drug abuse and dependence. Thereafter, we focused on the role of 5-HT2C receptors in the effects of cocaine in various preclinical behavioral models used in drug addiction research, such as locomotor hyperactivity, locomotor sensitization, drug discrimination, and self-administration, to end with an overview of the neurochemical mechanisms underlying the interactions between 5-HT2C receptors, mesocorticolimbic dopamine system, and cocaine. On their whole, the presented data provide compelling preclinical evidence that 5-HT2C receptor agonists may have efficacy in the treatment of cocaine abuse and dependence, thereby underlying the need for additional clinical studies to ascertain whether preclinical data translate to the human.


Assuntos
Comportamento/efeitos dos fármacos , Cocaína/farmacologia , Dopamina/metabolismo , Receptor 5-HT2C de Serotonina/metabolismo , Transtornos Relacionados ao Uso de Substâncias/metabolismo , Animais , Comportamento/fisiologia , Cocaína/efeitos adversos , Humanos , Neurônios/efeitos dos fármacos , Transtornos Relacionados ao Uso de Substâncias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...