Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 7604, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37165082

RESUMO

F508del, the most frequent mutation in cystic fibrosis (CF), impairs the stability and folding of the CFTR chloride channel, thus resulting in intracellular retention and CFTR degradation. The F508del defect can be targeted with pharmacological correctors, such as VX-809 and VX-445, that stabilize CFTR and improve its trafficking to plasma membrane. Using a functional test to evaluate a panel of chemical compounds, we have identified tricyclic pyrrolo-quinolines as novel F508del correctors with high efficacy on primary airway epithelial cells from CF patients. The most effective compound, PP028, showed synergy when combined with VX-809 and VX-661 but not with VX-445. By testing the ability of correctors to stabilize CFTR fragments of different length, we found that VX-809 is effective on the amino-terminal portion of the protein that includes the first membrane-spanning domain (amino acids 1-387). Instead, PP028 and VX-445 only show a stabilizing effect when the second membrane-spanning domain is included (amino acids 1-1181). Our results indicate that tricyclic pyrrolo-quinolines are a novel class of CFTR correctors that, similarly to VX-445, interact with CFTR at a site different from that of VX-809. Tricyclic pirrolo-quinolines may represent novel CFTR correctors suitable for combinatorial pharmacological treatments to treat the basic defect in CF.


Assuntos
Fibrose Cística , Quinolinas , Humanos , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Canais de Cloreto/genética , Quinolinas/uso terapêutico , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Fibrose Cística/metabolismo , Benzodioxóis/farmacologia , Benzodioxóis/uso terapêutico , Aminopiridinas/farmacologia , Aminopiridinas/uso terapêutico , Mutação
3.
Eur J Med Chem ; 254: 115372, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37068384

RESUMO

Unsatisfactory outcomes for relapsed/refractory lymphoma patients prompt continuing efforts to develop new therapeutic strategies. Our previous studies on pyrrole-based anti-lymphoma agents led us to synthesize a new series of twenty-six pyrrolo[3',4':3,4]cyclohepta[1,2-d] [1,2]oxazole derivatives and study their antiproliferative effects against a panel of four non-Hodgkin lymphoma cell lines. Several candidates showed significant anti-proliferative effects, with IC50's reaching the sub-micromolar range in at least one cell line, with compound 3z demonstrating sub-micromolar growth inhibitory effects towards the entire panel. The VL51 cell line was the most sensitive, with an IC50 value of 0.10 µM for 3z. Our earlier studies had shown that tubulin was a prominent target of many of our oxazole derivatives. We therefore examined their effects on tubulin assembly and colchicine binding. While 3u and 3z did not appear to target tubulin, good activity was observed with 3d and 3p. Molecular docking and molecular dynamics simulations allowed us to rationalize the binding mode of the synthesized compounds toward tubulin. All ligands exhibited a better affinity for the colchicine site, confirming their specificity for this binding pocket. In particular, a better affinity and free energy of binding was observed for 3d and 3p. This result was confirmed by experimental data, indicating that, although both 3d and 3p significantly affected tubulin assembly, only 3d showed activity comparable to that of combretastatin A-4, while 3p was about 4-fold less active. Cell cycle analysis showed that compounds 3u and especially 3z induced a block in G2/M, a strong decrease in S phase even at low compound concentrations and apoptosis through the mitochondrial pathway. Thus, the mechanism of action of 3u and 3z remains to be elucidated. Very high selectivity toward cancer cells and low toxicity in human peripheral blood lymphocytes were observed, highlighting the good potential of these agents in cancer therapy and encouraging further exploration of this compound class to obtain new small molecules as effective lymphoma treatments.


Assuntos
Antineoplásicos , Tubulina (Proteína) , Humanos , Tubulina (Proteína)/metabolismo , Simulação de Acoplamento Molecular , Antineoplásicos/química , Oxazóis/farmacologia , Oxazóis/química , Proliferação de Células , Moduladores de Tubulina/farmacologia , Colchicina/farmacologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Relação Estrutura-Atividade
4.
Eur J Med Chem ; 253: 115339, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37054631

RESUMO

Pyrrolomycins (PMs) are a family of naturally occurring antibiotic agents, isolated from the fermentation broth of Actinosporangium and Streptomyces species. Pursuing our studies on pyrrolomycins, we performed the total synthesis of the F-series pyrrolomycins (1-4) by microwave-assisted synthesis (MAOS), thus obtaining the title compounds in excellent yields (63-69%). Considering that there is no evidence so far of the anticancer effect of this class of compounds, we investigated PMs for their antiproliferative activity against HCT116 and MCF-7 cancer cell lines. PMs showed anticancer activity at submicromolar level with a minimal effect on normal epithelial cell line (hTERT RPE-1), and they were able to induce several morphological changes including elongated cells, cytoplasm vacuolization, long and thin filopodia as well as the appearance of tunneling nanotubes (TNTs). These data suggest that PMs could act by impairing the cell membranes and the cytoskeleton organization, with subsequent increase of ROS generation and the activation of different forms of non-apoptotic cell death.


Assuntos
Antineoplásicos , Streptomyces , Humanos , Micro-Ondas , Streptomyces/metabolismo , Fermentação , Células MCF-7
5.
Eur J Med Chem ; 249: 115136, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36708678

RESUMO

Viruses have been recognized as the etiological agents responsible for many pathological conditions ranging from asymptomatic infections to serious diseases, even leading to death. For this reason, many efforts have been made to identify selective viral targets with the aim of developing efficient therapeutic strategies, devoid of drug-resistance issues. Considering their crucial role in the viral life cycle, polymerases are very attractive targets. Among the classes of compounds explored as viral polymerases inhibitors, here we present an overview of non-nucleoside triazole-based compounds identified in the last fifteen years. Furthermore, the structure-activity relationships (SAR) of the different chemical entities are described in order to highlight the key chemical features required for the development of effective antiviral agents.


Assuntos
Triazóis , Vírus , Triazóis/farmacologia , Nucleosídeos/química , Antivirais/química , Nucleotidiltransferases
6.
Arch Pharm Res ; 45(11): 806-821, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36399284

RESUMO

Nineteen pyrrolo[1,2-h][1,7]naphthyridinones and pyrido[2,3-c]pyrrolo[1,2-a]azepinones were synthesized as new tricyclic systems in which the pyridine ring is annelated to the 6,7-dihydroindolizin-8(5H)-one and 5,6,7,8-tetrahydro-9H-pyrrole[1,2-a]azepine-9-one moieties to obtain potential photosensitizing agents. They were tested for their photoantiproliferative activity on a triple-negative breast cancer cell line, MDA-MB-231, in the dark and under UVA light (2.0 J/cm2). We demonstrated that their toxicity, only when exposed to light, was primarily due to the generation of reactive oxygen species while their photodegradation products were not responsible for their activity. The most active compounds exhibited photocytotoxicity with IC50 values at low micromolar level inducing a decrease in the intracellular content of thiol, thus triggering cancer cell death through apoptosis. All the pyridone derivatives revealed to be pure photosensitizers with preferential photocytotoxic activity towards cancerous over healthy cells. Altogether, the results obtained confirm pyrrolo[1,2-h][1,7]naphthyridinones and pyrido[2,3-c]pyrrolo[1,2-a]azepinones as promising photosensitisers against triple-negative breast cancer.


Assuntos
Fármacos Fotossensibilizantes , Neoplasias de Mama Triplo Negativas , Humanos , Fármacos Fotossensibilizantes/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Apoptose , Morte Celular , Espécies Reativas de Oxigênio
7.
Eur J Med Chem ; 243: 114744, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36242921

RESUMO

Lymphomas are among the ten most common cancers, and, although progress has been achieved in increasing survival, there is still an unmet need for more effective therapeutic approaches, including better options for patients with refractory tumors that initially respond but then relapse. The lack of effective alternative treatment options highlights the need to develop new therapeutic strategies capable of improving survival prospects for lymphoma patients. Herein, we describe the identification and exploration of the SAR of a series of [1,2]oxazolo[5,4-e]isoindoles as potent small molecules that bind to the colchicine site of tubulin and that have promise for the treatment of refractory lymphomas. Exploration of the chemical space of this class of compounds at the pyrrole moiety and at the [1,2]oxazole ring highlighted two compounds bearing a 3,5-dimethoxybenzyl and a 3,4,5-trimethoxybenzyl group as potent candidates and showed that structural modifications at the isoxazole moiety are generally not favorable for activity. The two best candidates showed efficacy against different lymphoma histotypes and displayed 88 and 80% inhibition of colchicine binding fitting well into the colchicine pocket, as demonstrated by X-ray crystallography T2R-TTL-complexes, docking and thermodynamic analysis of the tubulin-colchicine complex structure. These results were confirmed by transcriptome data, thus indicating [1,2]oxazolo[5,4-e]isoindoles are promising candidates as antitubulin agents for the treatment of refractory lymphomas.


Assuntos
Antineoplásicos , Linfoma , Neoplasias , Humanos , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/química , Tubulina (Proteína)/metabolismo , Colchicina/metabolismo , Isoindóis , Linfoma/tratamento farmacológico , Sítios de Ligação , Antineoplásicos/química , Linhagem Celular Tumoral , Relação Estrutura-Atividade
8.
Int J Mol Sci ; 23(18)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36142133

RESUMO

Microtubule-targeting agents (MTAs) are effective drugs for cancer treatment. A novel diaryl [1,2]oxazole class of compounds binding the colchicine site was synthesized as cis-restricted-combretastatin-A-4-analogue and then chemically modified to have improved solubility and a wider therapeutic index as compared to vinca alkaloids and taxanes. On these bases, a new class of tricyclic compounds, containing the [1,2]oxazole ring and an isoindole moiety, has been synthetized, among which SIX2G emerged as improved MTA. Several findings highlighted the ability of some chemotherapeutics to induce immunogenic cell death (ICD), which is defined by the cell surface translocation of Calreticulin (CALR) via dissociation of the PP1/GADD34 complex. In this regard, we computationally predicted the ability of SIX2G to induce CALR exposure by interacting with the PP1 RVxF domain. We then assessed both the potential cytotoxic and immunogenic activity of SIX2G on in vitro models of multiple myeloma (MM), which is an incurable hematological malignancy characterized by an immunosuppressive milieu. We found that the treatment with SIX2G inhibited cell viability by inducing G2/M phase cell cycle arrest and apoptosis. Moreover, we observed the increase of hallmarks of ICD such as CALR exposure, ATP release and phospho-eIF2α protein level. Through co-culture experiments with immune cells, we demonstrated the increase of (i) CD86 maturation marker on dendritic cells, (ii) CD69 activation marker on cytotoxic T cells, and (iii) phagocytosis of tumor cells following treatment with SIX2G, confirming the onset of an immunogenic cascade. In conclusion, our findings provide a framework for further development of SIX2G as a new potential anti-MM agent.


Assuntos
Antineoplásicos , Mieloma Múltiplo , Alcaloides de Vinca , Humanos , Trifosfato de Adenosina/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Calreticulina/metabolismo , Linhagem Celular Tumoral , Colchicina/farmacologia , Morte Celular Imunogênica , Isoindóis/farmacologia , Microtúbulos/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Oxazóis/farmacologia , Taxoides/farmacologia , Alcaloides de Vinca/farmacologia , Pemetrexede/farmacologia , Pemetrexede/uso terapêutico
9.
Drug Dev Res ; 83(6): 1331-1341, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35749723

RESUMO

A series of [1,2]oxazolo[5,4-e]isoindole derivatives was evaluated against HL-60 cell line and its multidrug resistance (MDR) variant, HL-60R, resistant to doxorubicin and to other P-gp substrates by overexpressing the efflux pump. They displayed antiproliferative activities, with IC50 values ranging from 0.02 to 5.5 µM. In particular, the newly synthesized compound 4k produced synergistic effects in terms of cell growth inhibition and cell death induction either in combination with a Vinca alkaloid, Vinblastine, and a Taxane, Paclitaxel in HL-60R cells. The study of the mechanism of action indicated that all compounds showed antimitotic activity through inhibition of tubulin polymerization. Thus, [1,2]oxazoles could represent a valuable tool to overcome MDR mechanism, confirming the potential use of this class of compounds.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Humanos , Isoindóis/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico
10.
Eur J Med Chem ; 237: 114399, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35468516

RESUMO

Searching for new small molecules as photosensitizing agents, we have developed a class of twenty-five pyrimido[5,4-g]indolizine and pyrimido[4,5-c]pyrrolo[1,2-a]azepines with a good substitution pattern defining a versatile synthetic pathway to approach the title ring system. All compounds were evaluated for their photocytotoxicity on a triple negative human breast cancer cell line (MDA-MB-231) in the dark and under UVA light (2.0 J/cm2). The most effective compounds exhibited a photoantiproliferative activity with IC50 values up to nanomolar ranges. Interestingly, these new developed compounds showed high selectivity towards cancerous cells with respect to non-cancerous ones. Moreover, four representative derivatives demonstrated to be phototoxic also against an additional human HER2 positive breast cancer cell line (HCC1954), and against the HER2 positive vesical cancer cell line (T24) harboring Hras mutation. Mechanistic studies performed in triple negative MDA-MB-231 cancer cells revealed the ability of the compounds to increase reactive oxygen species (ROS) production and to induce a thiol redox stress, thus triggering cancer cell death through apoptosis. Apoptotic cell death was also induced in highly aggressive and metastatic HER2 positive Hras mutated T24-treated bladder cancer cells. Overall, our data confirm that these new small photosensitizing agents may represent very promising candidates for phototherapy application against highly aggressive and resistant cancers.


Assuntos
Antineoplásicos , Indolizinas , Neoplasias de Mama Triplo Negativas , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Azepinas/farmacologia , Linhagem Celular Tumoral , Humanos , Indolizinas/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo
11.
Eur J Med Chem ; 235: 114292, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35339838

RESUMO

Despite progressive advances in understanding the molecular biology of acute myeloid leukemia (AML), the conventional therapeutic approach has not changed substantially, and the outcome for most patients is poor. Thus, continuous efforts on the discovery of new compounds with improved features are required. Following a multistep sequence, we have identified a new tetracyclic ring system with strong antiproliferative activity towards several haematological cell lines. The new compounds possess structural properties typical of inactive-state-binding kinase inhibitors and are structurally related to quizartinib which is known as type-II tyrosine kinase inhibitor. In particular, the high activity found in two cell lines MOLM-13 and MV4-11, expressing the constitutively activated mutant FLT3/ITD, indicates inhibition of FLT3 kinase and on the basis of structure-activity relationship (SAR) the presence of an ureido moiety demonstrates to play a key role in driving the antiproliferative activity towards these cell lines. Molecular modelling studies supported the mechanism of recognition of the most active compounds within the FLT3 pocket where quizartinib binds. Moreover, Molecular Dynamics simulation (MDs) revealed the formation of a recurrent H-bond with Asp829, which more stabilizes the complex of 9c and the FLT3 inactive state. In MV4-11 cell line compound 9c reduces the phosphorylation of FLT3 (Y591) and some of its downstream targets leading to cell cycle arrest at G1 phase and induction of apoptosis. In an MV4-11 xenograft mouse model, 9c significantly reduces the tumor growth at the dose of 1-3 mg/kg without apparent toxicity.


Assuntos
Leucemia Mieloide Aguda , Animais , Apoptose , Linhagem Celular Tumoral , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Camundongos , Mutação , Inibidores de Proteínas Quinases/química , Tirosina Quinase 3 Semelhante a fms/genética
12.
ACS Med Chem Lett ; 13(3): 358-364, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38239337

RESUMO

G protein-coupled receptors (GPCRs) are important classes of cell surface receptors involved in multiple physiological functions. Aberrant expression, upregulation, and mutation of GPCR signaling pathways are frequent in many types of cancers, promoting hyperproliferation, angiogenesis, and metastasis. Recent studies showed that alterations of GPCRs are involved in different lymphoma types. Herein, we review the synthetic strategies to obtain GPCR inhibitors, focusing on CXCR4 inhibitors which represent most of the GPCR inhibitors available in the market or under preclinical investigations for these diseases.

13.
Top Curr Chem (Cham) ; 379(5): 34, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34373963

RESUMO

The five-membered pyrrolidine ring is one of the nitrogen heterocycles used widely by medicinal chemists to obtain compounds for the treatment of human diseases. The great interest in this saturated scaffold is enhanced by (1) the possibility to efficiently explore the pharmacophore space due to sp3-hybridization, (2) the contribution to the stereochemistry of the molecule, (3) and the increased three-dimensional (3D) coverage due to the non-planarity of the ring-a phenomenon called "pseudorotation". In this review, we report bioactive molecules with target selectivity characterized by the pyrrolidine ring and its derivatives, including pyrrolizines, pyrrolidine-2-one, pyrrolidine-2,5-diones and prolinol described in the literature from 2015 to date. After a comparison of the physicochemical parameters of pyrrolidine with the parent aromatic pyrrole and cyclopentane, we investigate the influence of steric factors on biological activity, also describing the structure-activity relationship (SAR) of the studied compounds. To aid the reader's approach to reading the manuscript, we have planned the review on the basis of the synthetic strategies used: (1) ring construction from different cyclic or acyclic precursors, reporting the synthesis and the reaction conditions, or (2) functionalization of preformed pyrrolidine rings, e.g., proline derivatives. Since one of the most significant features of the pyrrolidine ring is the stereogenicity of carbons, we highlight how the different stereoisomers and the spatial orientation of substituents can lead to a different biological profile of drug candidates, due to the different binding mode to enantioselective proteins. We believe that this work can guide medicinal chemists to the best approach in the design of new pyrrolidine compounds with different biological profiles.


Assuntos
Descoberta de Drogas , Pirrolidinas/química , Humanos , Estrutura Molecular , Pirrolidinas/síntese química , Estereoisomerismo
14.
Molecules ; 26(5)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652850

RESUMO

Cystic fibrosis (CF) is a genetic disease caused by mutations that impair the function of the CFTR chloride channel. The most frequent mutation, F508del, causes misfolding and premature degradation of CFTR protein. This defect can be overcome with pharmacological agents named "correctors". So far, at least three different classes of correctors have been identified based on the additive/synergistic effects that are obtained when compounds of different classes are combined together. The development of class 2 correctors has lagged behind that of compounds belonging to the other classes. It was shown that the efficacy of the prototypical class 2 corrector, the bithiazole corr-4a, could be improved by generating conformationally-locked bithiazoles. In the present study, we investigated the effect of tricyclic pyrrolothiazoles as analogues of constrained bithiazoles. Thirty-five compounds were tested using the functional assay based on the halide-sensitive yellow fluorescent protein (HS-YFP) that measured CFTR activity. One compound, having a six atom carbocyle central ring in the tricyclic pyrrolothiazole system and bearing a pivalamide group at the thiazole moiety and a 5-chloro-2-methoxyphenyl carboxamide at the pyrrole ring, significantly increased F508del-CFTR activity. This compound could lead to the synthesis of a novel class of CFTR correctors.


Assuntos
Benzodioxóis/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/tratamento farmacológico , Proteínas Mutantes/genética , Aminoimidazol Carboxamida/química , Benzodioxóis/química , Fibrose Cística/genética , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/efeitos dos fármacos , Humanos , Mutação/efeitos dos fármacos , Mutação/genética , Dobramento de Proteína/efeitos dos fármacos , Tiazóis/química
15.
Eur J Med Chem ; 212: 113122, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33401199

RESUMO

A series of [1,3]thiazolo[4,5-e]isoindoles has been synthesized through a versatile and high yielding multistep sequence. Evaluation of the antiproliferative activity of the new compounds on the full NCI human tumor cell line panel highlighted several compounds that are able to inhibit tumor cell proliferation at micromolar-submicromolar concentrations. The most active derivative 11g was found to cause cell cycle arrest at the G2/M phase and induce apoptosis in HeLa cells, following the mitochondrial pathway, making it a lead compound for the discovery of new antimitotic drugs.


Assuntos
Isoindóis/farmacologia , Moduladores de Tubulina/farmacologia , Tubulina (Proteína)/metabolismo , Apoptose/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células HeLa , Humanos , Isoindóis/síntese química , Isoindóis/química , Modelos Moleculares , Estrutura Molecular , Polimerização/efeitos dos fármacos , Relação Estrutura-Atividade , Moduladores de Tubulina/síntese química , Moduladores de Tubulina/química
16.
Mar Drugs ; 18(12)2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33291602

RESUMO

The marine environment is a rich source of biologically active molecules for the treatment of human diseases, especially cancer. The adaptation to unique environmental conditions led marine organisms to evolve different pathways than their terrestrial counterparts, thus producing unique chemicals with a broad diversity and complexity. So far, more than 36,000 compounds have been isolated from marine micro- and macro-organisms including but not limited to fungi, bacteria, microalgae, macroalgae, sponges, corals, mollusks and tunicates, with hundreds of new marine natural products (MNPs) being discovered every year. Marine-based pharmaceuticals have started to impact modern pharmacology and different anti-cancer drugs derived from marine compounds have been approved for clinical use, such as: cytarabine, vidarabine, nelarabine (prodrug of ara-G), fludarabine phosphate (pro-drug of ara-A), trabectedin, eribulin mesylate, brentuximab vedotin, polatuzumab vedotin, enfortumab vedotin, belantamab mafodotin, plitidepsin, and lurbinectedin. This review focuses on the bioactive molecules derived from the marine environment with anticancer activity, discussing their families, origin, structural features and therapeutic use.


Assuntos
Antineoplásicos/química , Organismos Aquáticos/química , Toxinas Marinhas/química , Animais , Produtos Biológicos , Descoberta de Drogas , Humanos , Neoplasias/tratamento farmacológico , Microbiologia da Água
17.
J Med Chem ; 63(20): 12023-12042, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-32986419

RESUMO

A new class of pyrrolo[2',3':3,4]cyclohepta[1,2-d][1,2]oxazoles was synthesized for the treatment of hyperproliferative pathologies, including neoplasms. The new compounds were screened in the 60 human cancer cell lines of the NCI drug screen and showed potent activity with GI50 values reaching the nanomolar level, with mean graph midpoints of 0.08-0.41 µM. All compounds were further tested on six lymphoma cell lines, and eight showed potent growth inhibitory effects with IC50 values lower than 500 nM. Mechanism of action studies showed the ability of the new [1,2]oxazoles to arrest cells in the G2/M phase in a concentration dependent manner and to induce apoptosis through the mitochondrial pathway. The most active compounds inhibited tubulin polymerization, with IC50 values of 1.9-8.2 µM, and appeared to bind to the colchicine site. The G2/M arrest was accompanied by apoptosis, mitochondrial depolarization, generation of reactive oxygen species, and PARP cleavage.


Assuntos
Antimitóticos/farmacologia , Antineoplásicos/farmacologia , Mitose/efeitos dos fármacos , Oxazóis/farmacologia , Antimitóticos/síntese química , Antimitóticos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Células HeLa , Humanos , Modelos Moleculares , Estrutura Molecular , Oxazóis/síntese química , Oxazóis/química , Relação Estrutura-Atividade
18.
Eur J Med Chem ; 208: 112783, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32916311

RESUMO

The discovery of novel synthetic compounds with drug-like properties is an ongoing challenge in medicinal chemistry. Natural products have inspired the synthesis of compounds for pharmaceutical application, most of which are based on N-heterocyclic motifs. Among these, the pyrrole ring is one of the most explored heterocycles in drug discovery programs for several therapeutic areas, confirmed by the high number of pyrrole-based drugs reaching the market. In the present review, we focused on pyrrole and its hetero-fused derivatives with anticancer, antimicrobial, and antiviral activities, reported in the literature between 2015 and 2019, for which a specific target was identified, being responsible for their biological activity. It emerges that the powerful pharmaceutical and pharmacological features provided by the pyrrole nucleus as pharmacophore unit of many drugs are still recognized by medicinal chemists.


Assuntos
Terapia de Alvo Molecular , Pirróis/química , Pirróis/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Antivirais/química , Antivirais/farmacologia , Desenho de Fármacos , Humanos
19.
Eur J Med Chem ; 204: 112631, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32898816

RESUMO

Cystic fibrosis (CF) is a genetic disorder produced by the loss of function of CFTR, a main chloride channel involved in transepithelial salt and water transport. CFTR function can be rescued by small molecules called "potentiators" which increase gating activity of CFTR on epithelial surfaces. High throughput screening (HTS) assays allowed the identification of new chemical entities endowed with potentiator properties, further improved through medicinal chemistry optimization. In this review, the most relevant classes of CFTR potentiators developed in the last decade were explored, focusing on structure-activity relationships (SAR) of the different chemical entities, as a useful tool for the improvement of their pharmacological activity.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Aminofenóis/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Glicina/farmacologia , Humanos , Mutação , Quinolonas/farmacologia , Relação Estrutura-Atividade , Triazóis/farmacologia
20.
Eur J Med Chem ; 180: 430-448, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31326599

RESUMO

Deletion of phenylalanine at position 508 (F508del) in the CFTR protein, is the most common mutation causing cystic fibrosis (CF). F508del causes misfolding and rapid degradation of CFTR protein a defect that can be targeted with pharmacological agents termed "correctors". Correctors belong to various chemical classes but are generally small molecules based on nitrogen sulfur or oxygen heterocycles. The mechanism of action of correctors is generally unknown but there is experimental evidence that some of them can directly act on mutant CFTR improving folding and stability. Here we overview the characteristics of the various F508del correctors described so far to obtain indications on key chemical structures and modifications that are required for mutant protein rescue.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/antagonistas & inibidores , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Pirimidinonas/farmacologia , Tiazóis/farmacologia , Animais , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Humanos , Mutação , Dobramento de Proteína/efeitos dos fármacos , Pirimidinonas/química , Tiazóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...