Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 35(26): e2209779, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36951229

RESUMO

Thermoelectric materials convert heat into electricity through thermally driven charge transport in solids or vice versa for cooling. To compete with conventional energy-conversion technologies, a thermoelectric material must possess the properties of both an electrical conductor and a thermal insulator. However, these properties are normally mutually exclusive because of the interconnection between scattering mechanisms for charge carriers and phonons. Recent theoretical investigations on sub-device scales have revealed that nanopillars attached to a membrane exhibit a multitude of local phonon resonances, spanning the full spectrum, that couple with the heat-carrying phonons in the membrane and cause a reduction in the in-plane thermal conductivity, with no expected change in the electrical properties because the nanopillars are outside the pathway of voltage generation and charge transport. Here this effect is demonstrated experimentally for the first time by investigating device-scale suspended silicon membranes with GaN nanopillars grown on the surface. The nanopillars cause up to 21% reduction in the thermal conductivity while the power factor remains unaffected, thus demonstrating an unprecedented decoupling in the semiconductor's thermoelectric properties. The measured thermal conductivity behavior for coalesced nanopillars and corresponding lattice-dynamics calculations provide evidence that the reductions are mechanistically tied to the phonon resonances. This finding paves the way for high-efficiency solid-state energy recovery and cooling.

2.
Nanotechnology ; 30(23): 234001, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-30776789

RESUMO

Ultraviolet light-emitting diodes fabricated from N-polar AlGaN/GaN core-shell nanowires (NWs) with p-i-n structure produced electroluminescence at 365 nm with ∼5× higher intensities than similar GaN homojunction LEDs. The improved characteristics were attributed to localization of spontaneous recombination to the NW core, reduction of carrier overflow losses through the NW shell, and elimination of current shunting. Poisson-drift-diffusion modeling indicated that a shell Al mole fraction of x = 0.1 in Al x Ga1-x N effectively confines electrons and injected holes to the GaN core region. AlGaN overcoat layers targeting this approximate Al mole fraction were found to possess a low-Al-content tip and high-Al-content shell, as determined by scanning transmission electron microscopy. Photoluminescence spectroscopy further revealed the actual Al mole fraction to be NW diameter-dependent, where the tip and shell compositions converged towards the nominal flux ratio for large diameter NWs.

3.
IEEE Electron Device Lett ; 39(2): 184-187, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29720783

RESUMO

Wrap-around gate GaN nanowire MOSFETs using Al2O3 as gate oxide have been experimentally demonstrated. The fabricated devices exhibit a minimum subthreshold slope of 60 mV/dec, an average subthreshold slope of 68 mV/dec over three decades of drain current, drain-induced barrier lowering of 27 mV/V, an on-current of 42 µA/µm (normalized by nanowire circumference), on/off ratio over 108, an intrinsic transconductance of 27.8 µS/µm, for a switching efficiency figure of merit, Q=gm/SS of 0.41 µS/µm-dec/mV. These performance metrics make GaN nanowire MOSFETs a promising candidate for emerging low-power applications such as sensors and RF for the internet of things.

4.
Artigo em Inglês | MEDLINE | ID: mdl-33343056

RESUMO

GaN nanowire LEDs with radial p-i-n junctions were grown by molecular beam epitaxy using N-polar selective area growth on Si(111) substrates. The N-polar selective area growth process facilitated the growth of isolated and high-aspect-ratio n-type NW cores that were not subject to self-shadowing effects during the subsequent growth of a conformal low-temperature Mg:GaN shell. LED devices were fabricated from single-NW and multiple-NW arrays in their as-grown configuration by contacting the n-type core through an underlying conductive GaN layer and the p-type NW shell via a metallization layer. The NW LEDs exhibited rectifying I-V characteristics with a sharp turn-on voltage near the GaN bandgap and low reverse bias leakage current. Under forward bias, the NW LEDs produced electroluminescence with a peak emission wavelength near 380 nm and exhibited a small spectral blueshift with increasing current injection, both of which are consistent with electron recombination in the p-type shell layer through donor-acceptor-pair recombination. These core-shell NW devices demonstrate N-polar selective area growth as an effective technique for producing on-chip nanoscale light sources.

5.
Plasmonics ; 12(3): 743-750, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28503102

RESUMO

Solution-deposited nanoscale films of RuO2 ("nanoskins") are effective transparent conductors once calcined to 200 °C. Upon heating the nanoskins to higher temperature the nanoskins show increased transmission at 550 nm. Electronic microscopy and X-ray diffraction show that the changes in the optical spectrum are accompanied by the formation of rutile RuO2 nanoparticles. The mechanism for the spectral evolution is clearly observed with ultrafast optical measurements. Following excitation at 400 nm, nanoskins calcined at higher temperatures show increased transmission above 650 nm, consistent with the photobleaching of a surface-plasmon resonance (SPR) band. Calculations based on the optical constants of RuO2 substantiate the presence of SPR absorption. Sheet resistance and transient terahertz photoconductivity measurements establish that the nanoskins electrically de-wire into separated particles. The plasmonic behavior of the nanoskins has implications their use in a range of optical and electrochemical applications.

6.
Phys Chem Chem Phys ; 16(22): 10669-78, 2014 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-24756576

RESUMO

Enhancing the charge transfer process in nanocrystal sensitized solar cells is vital for the improvement of their performance. In this work we show a means of increasing photo-induced ultrafast charge transfer in successive ionic layer adsorption and reaction (SILAR) CdS-TiO2 nanocrystal heterojunctions using pulsed laser sintering of TiO2 nanocrystals. The enhanced charge transfer was attributed to both morphological and phase transformations. At sufficiently high laser fluences, volumetrically larger porous networks of the metal oxide were obtained, thus increasing the density of electron accepting states. Laser sintering also resulted in varying degrees of anatase to rutile phase transformation of the TiO2, producing thermodynamically more favorable conditions for charge transfer by increasing the change in free energy between the CdS donor and TiO2 acceptor states. Finally, we report aspects of apparent hot electron transfer as a result of the SILAR process which allows CdS to be directly adsorbed to the TiO2 surface.

7.
Opt Express ; 21 Suppl 1: A15-22, 2013 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-23389266

RESUMO

Ultrafast time-resolved absorption spectroscopy is used to investigate exciton dynamics in CdSe nanocrystal films. The effects of morphology, quantum-dot versus quantum-rod, and preparation of nanocrystals in a thin film form are investigated. The measurements revealed longer intraband exciton relaxation in quantum-rods than in quantum-dots. The slowed relaxation in quantum-rods is due to mitigation of the Auger-relaxation mechanism from elongating the nanocrystal. In addition, the nanocrystal thin film showed long-lived confined acoustic phonons corresponding to the ellipsoidal breathing mode, contrary to others work on colloidal systems of CdSe nanocrystals.


Assuntos
Compostos de Cádmio/química , Nanopartículas/química , Nanotecnologia/métodos , Pontos Quânticos , Compostos de Selênio/química , Análise Espectral/métodos , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...