Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38768310

RESUMO

The impact of exciton-vibrational (EV) coupling involving low-energy ("slow") intermolecular vibrations and higher-energy ("fast") intramolecular vibrations on the absorption and emission spectra of H- and J-dimers is studied theoretically for a pair of chromophores with excitonic coupling dominated by transition dipole-dipole coupling, JC. Exact quantum-mechanical solutions based on a Frenkel-Holstein-Peierls Hamiltonian reveal a fascinating interplay between the two coupling sources in determining the spectral line widths, Stoke shifts and radiative decay rates. It is shown that the ratio rules derived from the vibronic progression of the fast mode in molecular dimers remain valid under the influence of slow-mode EV coupling under most conditions. However, a highly unusual aggregate behavior occurs when the product of local and nonlocal couplings, |gLgNL|, exceeds 2ℏωs|JC|, where ℏωs is the energy of the slow mode. In this regime and when gL and gNL are in-phase, an H-dimer (JC > 0) becomes strongly emissive and can even be super-radiant, while a J-dimer (JC < 0) with out-of-phase gL and gNL values becomes subradiant. Such behaviors are in marked contrast to the predictions of Kasha theory and demonstrate the richness of the photophysical behavior resulting from EV coupling involving inter- and intramolecular vibrations.

2.
Mater Horiz ; 11(2): 545-553, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-37982315

RESUMO

This study provides the first experimental polarized intermolecular and intramolecular optical absorption components of field-induced polarons in regioregular poly(3-hexylthiophene-2,5-diyl), rr-P3HT, a polymer semiconductor. Highly aligned rr-P3HT thin films were prepared by a high temperature shear-alignment process that orients polymer backbones along the shearing direction. rr-P3HT in-plane molecular orientation was measured by electron diffraction, and out-of-plane orientation was measured through series of synchrotron X-ray scattering techniques. Then, with molecular orientation quantified, polarized charge modulation spectroscopy was used to probe mid-IR polaron absorption in the ℏω = 0.075 - 0.75 eV range and unambiguously assign intermolecular and intramolecular optical absorption components of hole polarons in rr-P3HT. This data represents the first experimental quantification of these polarized components and allowed long-standing theoretical predictions to be compared to experimental results. The experimental data is discrepant with predictions of polaron absorption based on an adiabatic framework that works under the Born-Oppenheimer approximation, but the data is entirely consistent with a more recent nonadiabatic treatment of absorption based on a modified Holstein Hamiltonian. This nonadiabatic treatment was used to show that both intermolecular and intramolecular polaron coherence break down at length scales significantly smaller than estimated structural coherence in either direction. This strongly suggests that polaron delocalization is fundamentally limited by energetic disorder in rr-P3HT.

3.
Mater Horiz ; 10(7): 2568-2578, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37089107

RESUMO

Synthetic efforts have delivered a library of organic mixed ionic-electronic conductors (OMIECs) with high performance in electrochemical transistors. The most promising materials are redox-active conjugated polymers with hydrophilic side chains that reach high transconductances in aqueous electrolytes due to volumetric electrochemical charging. Current approaches to improve transconductance and device stability focus mostly on materials chemistry including backbone and side chain design. However, other parameters such as the initial microstructure and microstructural rearrangements during electrochemical charging are equally important and are influenced by backbone and side chain chemistry. In this study, we employ a polymer system to investigate the fundamental electrochemical charging mechanisms of OMIECs. We couple in situ electronic charge transport measurements and spectroelectrochemistry with ex situ X-ray scattering electrochemical charging experiments and find that polymer chains planarize during electrochemical charging. Our work shows that the most effective conductivity modulation is related to electrochemical accessibility of well-ordered, interconnected aggregates that host high mobility electronic charge carriers. Electrochemical stress cycling induces microstructural changes, but we find that these aggregates can largely maintain order, providing insights on the structural stability and reversibility of electrochemical charging in these systems. This work shows the importance of material design for creating OMIECs that undergo structural rearrangements to accommodate ions and electronic charge carriers during which percolating networks are formed for efficient electronic charge transport.

5.
J Chem Phys ; 155(3): 034905, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34293903

RESUMO

A vibronic exciton model is developed to account for the spectral signatures of HJ-aggregates of oligomers and polymers containing donor-acceptor-donor (DAD) repeat units. In (DAD)N π-stacks, J-aggregate-promoting intrachain interactions compete with H-aggregate-promoting interchain interactions. The latter includes Coulombic coupling, which arises from "side-by-side" fragment transition dipole moments as well as intermolecular charge transfer (ICT), which is enhanced in geometries with substantial overlap between donors on one chain and acceptors on a neighboring chain. J-behavior is dominant in single (DAD)N chains with enhanced intrachain order as evidenced by an increased red-shift in the low-energy absorption band along with a heightened A1/A2 peak ratio, where A1 and A2 are the oscillator strengths of the first two vibronic peaks in the progression sourced by the symmetric quinoidal-aromatic vibration. By contrast, the positive H-promoting interchain Coulomb interactions operative in aggregates cause the vibronic ratio to attenuate, similar to what has been established in H-aggregates of homopolymers such as P3HT. An attenuated A1/A2 ratio can also be caused by H-promoting ICT which occurs when the electron and hole transfer integrals are out-of-phase. In this case, the A1 peak is red-shifted, in contrast to conventional Kasha H-aggregates. With slight modifications, the ratio formula derived previously for P3HT aggregates is shown to apply to (DAD)N aggregates as well, allowing one to determine the effective free-exciton interchain coupling from the A1/A2 ratio. Applications are made to polymers based on 2T-DPP-2T and 2T-BT-2T repeat units, where the importance of the admixture of the excited acceptor state in the lowest energy band is emphasized.

6.
Acc Chem Res ; 53(10): 2201-2211, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33035054

RESUMO

ConspectusExcitons and polarons play a central role in the electronic and optical properties of organic semiconducting polymers and molecular aggregates and are of fundamental importance in understanding the operation of organic optoelectronic devices such as solar cells and light-emitting diodes. For many conjugated organic molecules and polymers, the creation of neutral electronic excitations or ionic radicals is associated with significant nuclear relaxation, the bulk of which occurs along the vinyl-stretching mode or the aromatic-quinoidal stretching mode when conjugated rings are present. Within a polymer chain or molecular aggregate, nuclear relaxation competes with energy- and charge-transfer, mediated by electronic interactions between the constituent units (repeat units for polymers and individual chromophores for a molecular aggregate); for neutral electronic excitations, such inter-unit interactions lead to extended excited states or excitons, while for positive (or negative) charges, interactions lead to delocalized hole (or electron) polarons. The electronic coupling as well as the local coupling between electronic and nuclear degrees of freedom in both excitons and polarons can be described with a Holstein Hamiltonian. However, although excitons and polarons derive from similarly structured Hamiltonians, their optical signatures are quite distinct, largely due to differing ground states and optical selection rules.In this Account, we explore the similarities and differences in the spectral response of excitons and polarons in organic polymers and molecular aggregates. We limit our analysis to the subspace of excitons and hole polarons containing at most one excitation; hence we omit the influence of bipolarons, biexcitons, and higher multiparticle excitations. Using a generic linear array of coupled units as a model host for both excitons and polarons, we compare and contrast the optical responses of both quasiparticles, with a particular emphasis on the spatial coherence length, the length over which an exciton or polaron possesses wave-like properties important for more efficient transport. For excitons, the UV-vis absorption spectrum is generally represented by a distorted vibronic progression with H-like or J-like signatures depending on the sign of the electronic coupling, Jex. The spectrum broadens with increasing site disorder, with the spectral area preserved due to an oscillator strength sum rule. For (hole) polarons, the generally stronger electronic coupling results in a mid-IR spectrum consisting of a narrow, low-energy peak (A) with energy near a vibrational quantum of the vinyl stretching mode, and a broader, higher-energy feature (B). In contrast to the UV-vis spectrum, the mid-IR spectrum is invariant to the sign of the electronic coupling, th, and completely resistant to long-range disorder, where it remains entirely homogeneously broadened. Even in the presence of short-range disorder, the width of peak A remains surprisingly narrow as long as |th| remains sufficiently large, a property that can be understood in terms of Herzberg-Teller coupling. Unlike for excitons, for polarons, the absorption spectral area decreases with increasing short-range disorder σ (i.e., there is no oscillator sum rule) reflective of a decreasing polaron coherence length. The intensity of the low-energy peak A in relation to B is an important signature of polaron coherence. By contrast, for excitons, the absorption spectrum contains no unambiguous signs of exciton coherence. One must instead resort to the shape of the steady-state photoluminescence spectrum. The Holstein-based model has been highly successful in accounting for the spectral properties of molecular aggregates as well as conjugated polymers like poly(3-hexylthiophene) (P3HT) in the mid-IR and UV-vis spectral regions.

7.
J Am Chem Soc ; 142(32): 13898-13907, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32672948

RESUMO

Advances in protein design and engineering have yielded peptide assemblies with enhanced and non-native functionalities. Here, various molecular organic semiconductors (OSCs), with known excitonic up- and down-conversion properties, are attached to a de novo-designed protein, conferring entirely novel functions on the peptide scaffolds. The protein-OSC complexes form similarly sized, stable, water-soluble nanoparticles that are robust to cryogenic freezing and processing into the solid-state. The peptide matrix enables the formation of protein-OSC-trehalose glasses that fix the proteins in their folded states under oxygen-limited conditions. The encapsulation dramatically enhances the stability of protein-OSC complexes to photodamage, increasing the lifetime of the chromophores from several hours to more than 10 weeks under constant illumination. Comparison of the photophysical properties of astaxanthin aggregates in mixed-solvent systems and proteins shows that the peptide environment does not alter the underlying electronic processes of the incorporated materials, exemplified here by singlet exciton fission followed by separation into weakly bound, localized triplets. This adaptable protein-based approach lays the foundation for spectroscopic assessment of a broad range of molecular OSCs in aqueous solutions and the solid-state, circumventing the laborious procedure of identifying the experimental conditions necessary for aggregate generation or film formation. The non-native protein functions also raise the prospect of future biocompatible devices where peptide assemblies could complex with native and non-native systems to generate novel functional materials.


Assuntos
Peptídeos/química , Proteínas/química , Temperatura , Estrutura Molecular , Estabilidade Proteica , Semicondutores , Análise Espectral , Xantofilas/química
8.
J Chem Phys ; 152(20): 204113, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32486687

RESUMO

Polaritons in an ensemble of permutationally symmetric chromophores confined to an optical microcavity are investigated numerically. The analysis is based on the Holstein-Tavis-Cummings Hamiltonian which accounts for the coupling between an electronic excitation on each chromophore and a single cavity mode, as well as the coupling between the electronic and nuclear degrees of freedom on each chromophore. A straightforward ensemble partitioning scheme is introduced, which, along with an intuitive ansatz, allows one to obtain accurate evaluations of the lowest-energy polaritons using a subset of collective states. The polaritons include all three degrees of freedom-electronic, vibronic, and photonic-and can therefore be described as exciton-phonon polaritons. Applications focus on the limiting regimes where the Rabi frequency is small or large compared to the nuclear relaxation energy subsequent to optical excitation, with relaxation occurring mainly along the vinyl stretching coordinate in conjugated organic chromophores. Comparisons are also made to the more conventional vibronic polariton approach, which does not take into account two-particle excitations and vibration-photon states.

9.
J Chem Phys ; 152(14): 144702, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32295353

RESUMO

For the prototypical two-dimensional hybrid organic-inorganic perovskites (2D HOIPs) (AE4T)PbX4 (X = Cl, Br, and I), we demonstrate that the Frenkel-Holstein Hamiltonian (FHH) can be applied to describe the absorption spectrum arising from the organic component. We first model the spectra using only the four nearest neighbor couplings between translationally inequivalent molecules in the organic herringbone lattice as fitting parameters in the FHH. We next use linear-response time-dependent density functional theory (LR-TDDFT) to calculate molecular transition densities, from which extended excitonic couplings are evaluated based on the atomic positions within the 2D HOIPs. We find that both approaches reproduce the experimentally observed spectra, including changes in their shape and peak positions. The spectral changes are correlated with a decrease in excitonic coupling from X = Cl to X = I. Importantly, the LR-TDDFT-based approach with extended excitonic couplings not only gives better agreement with the experimental absorption line shape than the approach using a restricted set of fitted parameters but also allows us to relate the changes in excitonic coupling to the underlying geometry. We accordingly find that the decrease in excitonic coupling from X = Cl to Br to I is due to an increase in molecular separation, which in turn can be related to the increasing Pb-X bond length from Cl to I. Our research opens up a potential pathway to predicting optoelectronic properties of new 2D HOIPs from ab initio calculations and to gain insight into structural relations from 2D HOIP absorption spectra.

10.
Chem Rev ; 118(15): 7069-7163, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-29664617

RESUMO

The electronic excited states of molecular aggregates and their photophysical signatures have long fascinated spectroscopists and theoreticians alike since the advent of Frenkel exciton theory almost 90 years ago. The influence of molecular packing on basic optical probes like absorption and photoluminescence was originally worked out by Kasha for aggregates dominated by Coulombic intermolecular interactions, eventually leading to the classification of J- and H-aggregates. This review outlines advances made in understanding the relationship between aggregate structure and photophysics when vibronic coupling and intermolecular charge transfer are incorporated. An assortment of packing geometries is considered from the humble molecular dimer to more exotic structures including linear and bent aggregates, two-dimensional herringbone and "HJ" aggregates, and chiral aggregates. The interplay between long-range Coulomb coupling and short-range charge-transfer-mediated coupling strongly depends on the aggregate architecture leading to a wide array of photophysical behaviors.

11.
J Phys Chem Lett ; 8(20): 4974-4980, 2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-28949140

RESUMO

Sequential doping is a promising new doping technique for semicrystalline polymers that has been shown to produce doped films with higher conductivity and more uniform morphology than conventional doping processes, and where the dopant placement in the film can be controlled. As a relatively new technique, however, much work is needed to understand the resulting polymer-dopant interactions upon sequential doping. A combination of infrared spectroscopy and theoretical simulations shows that the dopants selectively placed in the amorphous regions in the film via sequential doping result in highly localized polarons. We find that the presence of dopants within the amorphous regions of the film leads to an increase in conjugation length of the amorphous chains upon doping, increasing film connectivity and hence improving the overall conductivity of the film compared with the conventional doping processes.

12.
Phys Rev Lett ; 118(22): 223601, 2017 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-28621976

RESUMO

Organic microcavities are photonic nanostructures that strongly confine the electromagnetic field, allowing exotic quantum regimes of light-matter interaction with disordered organic semiconductors. The unambiguous interpretation of the spectra of organic microcavities has been a long-standing challenge due to several competing effects involving electrons, vibrations, and cavity photons. Here we present a theoretical framework that is able to describe the main spectroscopic features of organic microcavities consistently. We introduce a class of light-matter excitations called dark vibronic polaritons, which strongly emit but only weakly absorb light in the same frequency region of the bare electronic transition. A successful comparison with experimental data demonstrates the applicability of our theory. The proposed microscopic understanding of organic microcavities paves the way for the development of optoelectronic devices enhanced by quantum optics.

13.
Nature ; 543(7647): 647-656, 2017 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-28358065

RESUMO

Coherence phenomena arise from interference, or the addition, of wave-like amplitudes with fixed phase differences. Although coherence has been shown to yield transformative ways for improving function, advances have been confined to pristine matter and coherence was considered fragile. However, recent evidence of coherence in chemical and biological systems suggests that the phenomena are robust and can survive in the face of disorder and noise. Here we survey the state of recent discoveries, present viewpoints that suggest that coherence can be used in complex chemical systems, and discuss the role of coherence as a design element in realizing function.


Assuntos
Biofísica , Modelos Biológicos , Modelos Químicos , Elétrons , Transferência de Energia , Metais/química , Modelos Moleculares , Movimento (Física) , Teoria Quântica , Análise Espectral , Fatores de Tempo , Vibração
14.
Acc Chem Res ; 50(2): 341-350, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28145688

RESUMO

The transport and photophysical properties of organic molecular aggregates, films, and crystals continue to receive widespread attention, driven mainly by expanding commercial applications involving display and wearable technologies as well as the promise of efficient, large-area solar cells. The main blueprint for understanding how molecular packing impacts photophysical properties was drafted over five decades ago by Michael Kasha. Kasha showed that the Coulombic coupling between two molecules, as determined by the alignment of their transition dipoles, induces energetic shifts in the main absorption spectral peak and changes in the radiative decay rate when compared to uncoupled molecules. In H-aggregates, the transition dipole moments align "side-by-side" leading to a spectral blue-shift and suppressed radiative decay rate, while in J-aggregates, the transition dipole moments align "head-to-tail" leading to a spectral red-shift and an enhanced radiative decay rate. Although many examples of H- and J-aggregates have been discovered, there are also many "unconventional" aggregates, which are not understood within the confines of Kasha's theory. Examples include nanopillars of 7,8,15,16-tetraazaterrylene, as well as several perylene-based dyes, which exhibit so-called H- to J-aggregate transformations. Such aggregates are typically characterized by significant wave function overlap between neighboring molecular orbitals as a result of small (∼4 Å) intermolecular distances, such as those found in rylene π-stacks and oligoacene herringbone lattices. Wave function overlap facilitates charge-transfer which creates an effective short-range exciton coupling that can also induce J- or H-aggregate behavior, depending on the sign. Unlike Coulomb coupling, short-range coupling is extremely sensitive to small (sub-Å) transverse displacements between neighboring chromophores. For perylene chromophores, the sign of the short-range coupling changes several times as two molecules are "slipped" from a "side-by-side" to "head-to-tail" configuration, in marked contrast to the sign of the Coulomb coupling, which changes only once. Such sensitivity allows J- to H-aggregate interconversions over distances several times smaller than those predicted by Kasha's theory. Moreover, since the total coupling drives exciton transport and photophysical properties, interference between the short- and long-range (Coulomb) couplings, as manifest by their relative signs and magnitudes, gives rise to a host of new aggregate types, referred to as HH, HJ, JH, and JJ aggregates, with distinct photophysical properties. An extreme example is the "null" HJ-aggregate in which total destructive interference leads to absorption line shapes practically identical to uncoupled molecules. Moreover, the severely compromised exciton bandwidth effectively shuts down energy transport. Most importantly, the new aggregates types described herein can be exploited for electronic materials design. For example, the enhanced exciton bandwidth and weakly emissive properties of HH-aggregates make them ideal candidates for solar cell absorbers, while the enhanced charge mobility and strong emissive behavior of JJ-aggregates makes them excellent candidates for light-emitting diodes.

15.
J Phys Chem Lett ; 8(6): 1118-1123, 2017 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-28195742

RESUMO

We report the polarized absorption spectra of high-quality, thin crystals of a perylene diimide (PDI) species with branched side chains (B2). The absorption spectrum shows exemplary polarization-dependent H-like and J-like aggregate behavior upon orthogonal excitation, with a sizable Davydov splitting (DS) of 1230 cm-1 and peak to peak splitting of 3040 cm-1. The experimental results are compared to theoretical calculations with remarkable agreement. The theoretical analysis of the polarized absorption spectra shows evidence of a high degree of intermolecular charge transfer, which, along with Coulombic coupling, conspires to create the unprecedented DS for this family of dye molecules. The large polarization dependence of the electronic spectra is attributed to the unique twisted crystal structure, in which a substantial rotational displacement exists between neighboring chromophores within a π-stack. These results highlight the strong sensitivity of the Davydov splitting to intermolecular geometry in PDI systems.

16.
J Am Chem Soc ; 138(36): 11762-74, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27589150

RESUMO

Coupling among chromophores in molecular assemblies is responsible for phenomena such as resonant energy transfer and intermolecular charge transfer. These processes are central to the fields of organic photovoltaics and photocatalysis, where it is necessary to funnel energy or charge to specific regions within the system. As such, a fundamental understanding of these transport processes is essential for developing new materials for photovoltaic and photocatalytic applications. Recently, photocatalytic systems based on photosensitizing perylene monomimide (PMI) chromophore amphiphiles were found to show variation in hydrogen gas (H2) production as a function of nanostructure crystallinity. The 2D crystalline systems form in aqueous electrolyte solution, which provides a high dielectric environment where the Coulomb potential between charges is mitigated. This results in relatively weakly bound excitons that are ideal for reducing protons. In order to understand how variations in crystalline structure affect H2 generation, two representative PMI systems are investigated theoretically using a modified Holstein Hamiltonian. The Hamiltonian includes both molecular Frenkel excitations (FE) and charge-transfer excitations (CTE) coupled nonadiabatically to local intramolecular vibrations. Signatures of FE/CTE mixing and the extent of electron/hole separation are identified in the optical absorption spectrum and are found to correlate strongly to the observed H2 production rates. The absorption spectral signatures are found to sensitively depend on the relative phase between the electron and hole transfer integrals, as well as the diabatic energy difference between the Frenkel and CT exciton bands. Our analysis provides design rules for artificial photosynthetic systems based on organic chromophore arrays.

17.
Phys Rev Lett ; 116(23): 238301, 2016 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-27341263

RESUMO

The demonstration of strong and ultrastrong coupling regimes of cavity QED with polyatomic molecules has opened new routes to control chemical dynamics at the nanoscale. We show that strong resonant coupling of a cavity field with an electronic transition can effectively decouple collective electronic and nuclear degrees of freedom in a disordered molecular ensemble, even for molecules with high-frequency quantum vibrational modes having strong electron-vibration interactions. This type of polaron decoupling can be used to control chemical reactions. We show that the rate of electron transfer reactions in a cavity can be orders of magnitude larger than in free space for a wide class of organic molecular species.

18.
J Chem Phys ; 143(24): 244707, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26723702

RESUMO

The spectroscopic differences between J and H-aggregates are traditionally attributed to the spatial dependence of the Coulombic coupling, as originally proposed by Kasha. However, in tightly packed molecular aggregates wave functions on neighboring molecules overlap, leading to an additional charge transfer (CT) mediated exciton coupling with a vastly different spatial dependence. The latter is governed by the nodal patterns of the molecular LUMOs and HOMOs from which the electron (te) and hole (th) transfer integrals derive. The sign of the CT-mediated coupling depends on the sign of the product teth and is therefore highly sensitive to small (sub-Angstrom) transverse displacements or slips. Given that Coulombic and CT-mediated couplings exist simultaneously in tightly packed molecular systems, the interference between the two must be considered when defining J and H-aggregates. Generally, such π-stacked aggregates do not abide by the traditional classification scheme of Kasha: for example, even when the Coulomb coupling is strong the presence of a similarly strong but destructively interfering CT-mediated coupling results in "null-aggregates" which spectroscopically resemble uncoupled molecules. Based on a Frenkel/CT Holstein Hamiltonian that takes into account both sources of electronic coupling as well as intramolecular vibrations, vibronic spectral signatures are developed for integrated Frenkel/CT systems in both the perturbative and resonance regimes. In the perturbative regime, the sign of the lowest exciton band curvature, which rigorously defines J and H-aggregation, is directly tracked by the ratio of the first two vibronic peak intensities. Even in the resonance regime, the vibronic ratio remains a useful tool to evaluate the J or H nature of the system. The theory developed is applied to the reversible H to J-aggregate transformations recently observed in several perylene bisimide systems.

19.
J Chem Phys ; 140(24): 244902, 2014 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-24985673

RESUMO

Infrared absorption of positively charged polarons in conjugated polymer chains and π-stacked aggregates is investigated theoretically, employing a Holstein-based Hamiltonian which treats electronic coupling, electron-vibrational coupling, and disorder on equal footing. The spectra evaluated from the Hamiltonian expressed in a one- and two-particle basis set are essentially exact, insofar as the main, aromatic-quinoidal vibrational mode is treated fully nonadiabatically. Diagonal and off-diagonal ("paracrystalline") disorder are resolved along the polymer axis (x) and the aggregate stacking axis (y). Disorder along the polymer axis selectively attenuates the x-polarized spectrum, which is dominated by the polaron peak P1. Disorder along the stacking axis selectively attenuates the y-polarized spectrum, which is dominated by the lower-energy charge-transfer peak, DP1. Calculated spectra are in excellent agreement with the measured induced-absorption and charge-modulation spectra, reproducing the peak positions and relative peak intensities within a line shape rich in vibronic structure. Our nonadiabatic approach predicts the existence of a weak, x-polarized peak P0, slightly blueshifted from DP1. The peak is intrinsic to single polymer chains and appears in a region of the spectrum where narrow infrared active vibrational modes have been observed in nonaggregated conjugated polymers. The polaron responsible for P0 is composed mainly of two-particle wave functions and cannot be accounted for in the more conventional adiabatic treatments.

20.
J Phys Chem B ; 118(28): 8352-63, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-24773383

RESUMO

The impact of chain bending on the photophysical properties of emissive conjugated polymers (CPs) is studied theoretically using Holstein-style Hamiltonians which treat vibronic coupling involving the ubiquitous vinyl/ring stretching mode nonadiabatically. The photophysical impact of chain bending is already evident at the level of an effective Frenkel Hamiltonian, where the positive exciton band curvature in CPs translates to negative excitonic coupling between monomeric units, as in J-aggregates. It is shown that the absorption and photoluminescence (PL) spectral line shapes respond very differently to chain bending. The misalignment of monomeric transition dipole moments with bending selectively attenuates the 0-0 PL peak intensity while leaving the 0-1 intensity practically unchanged, a property which is ultimately due to the uniquely coherent nature of the 0-0 peak. Hence, the 0-0/0-1 PL ratio, as well as the radiative decay rate, decrease with chain bending, effects that are more pronounced at lower temperatures where exciton coherence extends over a larger portion of the chain. Increasing temperature and/or static disorder reduces the exciton coherence number, Ncoh, thereby reducing the sensitivity to bending. In marked contrast, the absorption vibronic progression is far less sensitive to morphological changes, even at low temperatures, and is mainly responsive to the exciton bandwidth. The above results also hold when using a more accurate 1D semiconductor Hamiltonian which allows for electron-hole separation along the CP chain. The findings may suggest unique ways of controlling the radiative properties of conjugated polymer chains useful in applications such as organic light emitting diodes (OLEDs) and low-temperature sensors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...