Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life (Basel) ; 13(2)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36836772

RESUMO

Brodifacoum is the most common rodenticide used for the eradication of invasive rodents from islands. It blocks the vitamin K cycle, resulting in hemorrhages in target mammals. Non-target species may be incidentally exposed to brodifacoum, including marine species. A case study conducted on the Italian Marine Protected Area of Tavolara Island was reported after a rodent eradication using the aerial broadcast of a brodifacoum pellet. Brodifacoum presence and effects on non-target marine organisms were investigated. Different fish species were sampled, and a set of analyses was conducted to determine vitamin K and vitamin K epoxide reductase concentrations, prothrombin time, and erythrocytic nuclear abnormalities (ENA) assay. In all the examined organisms, brodifacoum was not detected. The results obtained showed differences in vitamin K and vitamin K epoxide concentrations among the samples studied, with a positive correlation for three species between vitamin K, vitamin K epoxide, and fish weight. The prothrombin time assay showed a good blood clotting capacity in the fish. Higher abnormality values were recorded for four species. The results of this study suggest that it is possible to hypothesize that the sampled fish were not likely to have been exposed to brodifacoum and that consequently there are no negative issues concerning human consumption.

2.
Elife ; 112022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36576248

RESUMO

Multiple evidence in rodents shows that the strength of excitatory synapses in the cerebral cortex and hippocampus is greater after wake than after sleep. The widespread synaptic weakening afforded by sleep is believed to keep the cost of synaptic activity under control, promote memory consolidation, and prevent synaptic saturation, thus preserving the brain's ability to learn day after day. The cerebellum is highly plastic and the Purkinje cells, the sole output neurons of the cerebellar cortex, are endowed with a staggering number of excitatory parallel fiber synapses. However, whether these synapses are affected by sleep and wake is unknown. Here, we used serial block face scanning electron microscopy to obtain the full 3D reconstruction of more than 7000 spines and their parallel fiber synapses in the mouse posterior vermis. This analysis was done in mice whose cortical and hippocampal synapses were previously measured, revealing that average synaptic size was lower after sleep compared to wake with no major changes in synapse number. Here, instead, we find that while the average size of parallel fiber synapses does not change, the number of branched synapses is reduced in half after sleep compared to after wake, corresponding to ~16% of all spines after wake and ~8% after sleep. Branched synapses are harbored by two or more spines sharing the same neck and, as also shown here, are almost always contacted by different parallel fibers. These findings suggest that during wake, coincidences of firing over parallel fibers may translate into the formation of synapses converging on the same branched spine, which may be especially effective in driving Purkinje cells to fire. By contrast, sleep may promote the off-line pruning of branched synapses that were formed due to spurious coincidences.


Assuntos
Axônios , Neurônios , Camundongos , Animais , Axônios/fisiologia , Neurônios/fisiologia , Cerebelo/fisiologia , Sono/fisiologia , Sinapses/fisiologia , Células de Purkinje/fisiologia
3.
Eur J Neurosci ; 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36226638

RESUMO

The systemic administration of sodium oxybate (SXB), the sodium salt of gamma-hydroxybutyric acid, promotes slow wave activity (SWA, 0.5-4 Hz EEG power) and increases non-rapid eye movement (NREM) sleep. These effects are mediated by the widely expressed GABAb receptors, and thus, the brain areas targeted by SXB remain unclear. Because slow waves are mainly a cortical phenomenon, we tested here whether systemic SXB promotes SWA by acting directly on the cortex. Moreover, because somatostatin (SOM) + cortical interneurons play a key role in SWA generation, we also assessed their contribution to the effects of SXB. In adult SOM-Cre mice, the injection of SXB in left secondary motor cortex increased SWA during NREM sleep in the first 30 min post-injection (11 mice: either sex). SWA, the amplitude and frequency of the slow waves, and the frequency of the OFF periods increased ipsilaterally and contralaterally to the SXB injection in frontal and parietal cortex. All these changes disappeared when the intracortical injection of SXB was preceded by the chemogenetic inhibition of the SOM+ cells. Thus, SXB may promote the slow waves of NREM sleep, at least in part, by acting directly on the cortex, and this effect involves GABAergic SOM+ interneurons. Our working hypothesis is that SXB potentiates the ability of these cells to inhibit all other cortical cell types via a GABAb mechanism, thus promoting the transition from ON to OFF periods during NREM sleep.

4.
Sleep ; 45(5)2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35554595

RESUMO

The cellular consequences of sleep loss are poorly characterized. In the pyramidal neurons of mouse frontal cortex, we found that mitochondria and secondary lysosomes occupy a larger proportion of the cytoplasm after chronic sleep restriction compared to sleep, consistent with increased cellular burden due to extended wake. For each morphological parameter, the within-animal variance was high, suggesting that the effects of sleep and sleep loss vary greatly among neurons. However, the analysis was based on 4-5 mice/group and a single section/cell. Here, we applied serial block-face scanning electron microscopy to identify signatures of sleep and sleep loss in the Drosophila brain. Stacks of images were acquired and used to obtain full 3D reconstructions of the cytoplasm and nucleus of 263 Kenyon cells from adult flies collected after a night of sleep (S) or after 11 h (SD11) or 35 h (SD35) of sleep deprivation (9 flies/group). Relative to S flies, SD35 flies showed increased density of dark clusters of chromatin and Golgi apparata and a trend increase in the percent of cell volume occupied by mitochondria, consistent with increased need for energy and protein supply during extended wake. Logistic regression models could assign each neuron to the correct experimental group with good accuracy, but in each cell, nuclear and cytoplasmic changes were poorly correlated, and within-fly variance was substantial in all experimental groups. Together, these results support the presence of ultrastructural signatures of sleep and sleep loss but underscore the complexity of their effects at the single-cell level.


Assuntos
Dípteros , Vigília , Animais , Lobo Frontal , Camundongos , Sono/fisiologia , Privação do Sono , Vigília/fisiologia
5.
Sleep ; 42(11)2019 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-31374117

RESUMO

In adolescent and adult brains several molecular, electrophysiological, and ultrastructural measures of synaptic strength are higher after wake than after sleep [1, 2]. These results support the proposal that a core function of sleep is to renormalize the increase in synaptic strength associated with ongoing learning during wake, to reestablish cellular homeostasis and avoid runaway potentiation, synaptic saturation, and memory interference [2, 3]. Before adolescence however, when the brain is still growing and many new synapses are forming, sleep is widely believed to promote synapse formation and growth. To assess the role of sleep on synapses early in life, we studied 2-week-old mouse pups (both sexes) whose brain is still undergoing significant developmental changes, but in which sleep and wake are easy to recognize. In two strains (CD-1, YFP-H) we found that pups spend ~50% of the day asleep and show an immediate increase in total sleep duration after a few hours of enforced wake, indicative of sleep homeostasis. In YFP-H pups we then used serial block-face electron microscopy to examine whether the axon-spine interface (ASI), an ultrastructural marker of synaptic strength, changes between wake and sleep. We found that the ASI of cortical synapses (layer 2, motor cortex) was on average 33.9% smaller after sleep relative to after extended wake and the differences between conditions were consistent with multiplicative scaling. Thus, the need for sleep-dependent synaptic renormalization may apply also to the young, pre-weaned cerebral cortex, at least in the superficial layers of the primary motor area.


Assuntos
Córtex Cerebral/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Sono/fisiologia , Sinapses/fisiologia , Vigília/fisiologia , Animais , Animais Recém-Nascidos , Axônios/fisiologia , Espinhas Dendríticas/fisiologia , Fenômenos Eletrofisiológicos , Feminino , Aprendizagem , Masculino , Camundongos , Microscopia Eletrônica
6.
J Neurosci ; 39(34): 6613-6625, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31263066

RESUMO

Sleep has been hypothesized to rebalance overall synaptic strength after ongoing learning during waking leads to net synaptic potentiation. If so, because synaptic strength and size are correlated, synapses on average should be larger after wake and smaller after sleep. This prediction was recently confirmed in mouse cerebral cortex using serial block-face electron microscopy (SBEM). However, whether these findings extend to other brain regions is unknown. Moreover, sleep deprivation by gentle handling was reported to produce hippocampal spine loss, raising the question of whether synapse size and number are differentially affected by sleep and waking. Here we applied SBEM to measure axon-spine interface (ASI), the contact area between pre-synapse and post-synapse, and synapse density in CA1 stratum radiatum. Adolescent YFP-H mice were studied after 6-8 h of sleep (S = 6), spontaneous wake at night (W = 4) or wake enforced during the day by novelty exposure (EW = 4; males/females balanced). In each animal ≥425 ASIs were measured and synaptic vesicles were counted in ~100 synapses/mouse. Reconstructed dendrites included many small, nonperforated synapses and fewer large, perforated synapses. Relative to S, ASI sizes in perforated synapses shifted toward higher values after W and more so after EW. ASI sizes in nonperforated synapses grew after EW relative to S and W, and so did their density. ASI size correlated with presynaptic vesicle number but the proportion of readily available vesicles decreased after EW, suggesting presynaptic fatigue. Thus, CA1 synapses undergo changes consistent with sleep-dependent synaptic renormalization and their number increases after extended wake.SIGNIFICANCE STATEMENT Sleep benefits learning, memory consolidation, and the integration of new with old memories, but the underlying mechanisms remain highly debated. One hypothesis suggests that sleep's cognitive benefits stem from its ability to renormalize total synaptic strength, after ongoing learning during wake leads to net synaptic potentiation. Supporting evidence for this hypothesis mainly comes from the cerebral cortex, including the observation that cortical synapses are larger after wake and smaller after sleep. Using serial electron microscopy, we find here that sleep/wake synaptic changes consistent with sleep-dependent synaptic renormalization also occur in the CA1 region. Thus, the role of sleep in maintaining synaptic homeostasis may extend to the hippocampus, a key area for learning and synaptic plasticity.


Assuntos
Axônios/patologia , Região CA1 Hipocampal/patologia , Espinhas Dendríticas/patologia , Privação do Sono/patologia , Sinapses/patologia , Envelhecimento , Animais , Feminino , Aprendizagem , Masculino , Memória , Camundongos , Camundongos Transgênicos , Plasticidade Neuronal , Transmissão Sináptica , Vigília
7.
Sci Rep ; 8(1): 11225, 2018 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-30046159

RESUMO

By identifying endogenous molecules in brain extracellular fluid metabolomics can provide insight into the regulatory mechanisms and functions of sleep. Here we studied how the cortical metabolome changes during sleep, sleep deprivation and spontaneous wakefulness. Mice were implanted with electrodes for chronic sleep/wake recording and with microdialysis probes targeting prefrontal and primary motor cortex. Metabolites were measured using ultra performance liquid chromatography-high resolution mass spectrometry. Sleep/wake changes in metabolites were evaluated using partial least squares discriminant analysis, linear mixed effects model analysis of variance, and machine-learning algorithms. More than 30 known metabolites were reliably detected in most samples. When used by a logistic regression classifier, the profile of these metabolites across sleep, spontaneous wake, and enforced wake was sufficient to assign mice to their correct experimental group (pair-wise) in 80-100% of cases. Eleven of these metabolites showed significantly higher levels in awake than in sleeping mice. Some changes extend previous findings (glutamate, homovanillic acid, lactate, pyruvate, tryptophan, uridine), while others are novel (D-gluconate, N-acetyl-beta-alanine, N-acetylglutamine, orotate, succinate/methylmalonate). The upregulation of the de novo pyrimidine pathway, gluconate shunt and aerobic glycolysis may reflect a wake-dependent need to promote the synthesis of many essential components, from nucleic acids to synaptic membranes.


Assuntos
Metabolômica , Córtex Pré-Frontal/metabolismo , Sono/fisiologia , Vigília/fisiologia , Animais , Ácido Glutâmico/metabolismo , Ácido Homovanílico/metabolismo , Humanos , Ácido Láctico/metabolismo , Camundongos , Córtex Motor/metabolismo , Córtex Motor/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Ácido Pirúvico/metabolismo , Privação do Sono/metabolismo , Privação do Sono/fisiopatologia , Triptofano/metabolismo , Uridina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...